Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-23T02:39:06.687Z Has data issue: false hasContentIssue false

Physical Conditions in the Central Region, and the Nature of the Engine

Published online by Cambridge University Press:  30 March 2016

A. Cavaliere*
Affiliation:
University of Rome, Istituto Astronomico, P.le A, Moro, 2 – 00185 Rome

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The phenomena associated with Active Galactic Nuclei raise three main astrophysical problems: (1) the nature of the primary source of energy; (2) the physical conditions within the radiation source; (3) the nature of the population evolution over cosmological time-scales.

I shall outline the links between (1) and (2), (1) and (3), that briefly go as follows. The Prime Mover is very likely to be a converter of gravitational energy in a very compact mass configuration. The associated radiation source, if it is also very compact, is so efficient and loss-dominated as to require specific conditions for the power transport and supply to the radiating particles: collisionless, effected by electromagnetic fields coherent on scales collective or macroscopic, to the point of producing at times anisotropic bulk motions. Very compact Prime Movers working at high regimes need also a compact mass supply; the output from these compound engines undergoes a characteristic change that accounts for the type of population evolutions of the associated sources.

Type
Joint Discussions
Copyright
Copyright © Reidel 1983

References

Angel, J.R.P. and Stockman, H.S.: 1980, Ann. Rev. Astrom. Astrophys. 8, p. 321.CrossRefGoogle Scholar
Blandford, R.D.: 1976, MNRAS 176, p. 465.Google Scholar
Blandford, R.D. and Znajek, R.L.: 1977, MNRAS 179, p. 433.Google Scholar
Blandford, R.D. and Rees, M.J.: 1978, “Proc. Pittsburg Conference on BL Lac ObjectsWolfe, ed., p. 328.Google Scholar
Blandford, R.D. and Payne, D.G.: 1982, MNRAS 199, p. 883.Google Scholar
Cavaliere, A., Morrison, P. and Wood, K.: 1971, Ap. J. 170, p. 223.CrossRefGoogle Scholar
Cavaliere, A. and Morrison, P.: 1980, Ap. J.Lett. 238, p. L63.Google Scholar
Cavaliere, A.: 1981Plasma AstrophysicsESA SP-161, p. 97 (Paris).Google Scholar
Cavaliere, A., Giallongo, E., Messina, A. and Vagnetti, F.: 1982, to be published in Astron. Astrophys.Google Scholar
Cavallo, G. and Rees, M.J.: 1978, MNRAS 183, p. 359.CrossRefGoogle Scholar
Cheney, J.E. and Rowan-Robinson, M.: 1981, MNRAS 497, p. 195.Google Scholar
Cowie, L.L. and Binney, J.: 1977, Ap. J. 215, p. 723.Google Scholar
Fabian, A.C. and Rees, M.J.: 1978, “X-Ray AstronomyBaity, and Peterson, eds, Pergamon Press, p. 381.Google Scholar
Guilbert, P.W., Fabian, A.C. and Ross, R.R.: 1982, MNRAS 199, p. 763.Google Scholar
Guilbert, P.W., Fabian, A.C. and Stepney, S.: 1982, MNRAS 199, p. 19PGoogle Scholar
Königl, A.: 1981, Ap. J. 243, p. 700.Google Scholar
Lightman, A.P.: 1981, Ap. J. 253, p. 842.CrossRefGoogle Scholar
Lovelace, R.V.E.: 1981, “Plasma AstrophysicsESA SP-161, p. 215, (Paris).Google Scholar
Marshall, N., Warwick, R.S. and Pounds, K.A.: 1981, MNRAS 194, p. 197.Google Scholar
McMillan, S.L.W., Lightman, A.P. and Cohn, H.: 1981, Ap. J. 251, p. 436.Google Scholar
Ozernoy, L.H. and Usov, V.V.: 1973, Ap. Space Sci. 25, 149.CrossRefGoogle Scholar
Pacini, F. and Salvati, M.: 1978, Ap. J.Lett. 255, p. L99.Google Scholar
Peacock, J.A. and Gull, S.F.: 1981, MNRAS 196, p. 611.Google Scholar
Peacock, J.A.: 1982, MNRAS 199, p. 987.Google Scholar
Rees, M.J., Begelman, M.C. and Blandford, R.D.: 1980, 10th Texas Symposium on Relativistic Astrophysics, Ramaty, and Jones, eds., p. 254 (New York Academy of Sciences, New York).Google Scholar
Rees, M.J.: 1981, “X-ray AstronomyAndresen, R.D. ed., p. 87 (Reidel, Dordrecht).Google Scholar
Rees, M.J., Begelman, M.C., Blandford, R.D., and Phinney, E.S.: 1982, Nature 295, p. 17.Google Scholar
Rieke, G.H., Lebofsky, M.J. and Wisniewski, W.Z.: 1982, preprint.Google Scholar
Scheuer, P.A.G., Readhead, A.C.S.: 1979, Nature 277, 182.Google Scholar
Schmidt, M.: 1978, Phys. Scr. 17, 329.CrossRefGoogle Scholar
Schmidt, M. and Green, R.F.: 1982, in “Astrophysical Cosmology”, Brück, , Coyne, and Longair, eds., Pont. Acad. Scientiarum Scripta Varia 48, p. 281.Google Scholar
Setti, G. and Woltjer, L.: 1982, “Astrophysical Cosmology”, Brück, , Coyne, and Longair, eds., Pont. Acad. Scientiarum Scripta Varia 48, p. 315.Google Scholar
Sunyaev, R.A. and Titarchuk, L.G.: 1980, Astron. Astrophys. 86, p. 21.Google Scholar
Svensson, R.: 1981, preprint.Google Scholar
Takahara, F.: 1980, Progr. Theor. Phys. 63, p. 1551.Google Scholar
Tennant, A.F. and Mushotsky, R.F., 1982, preprint.Google Scholar
van der Laan, H. and Windhorst, R.A.: 1982, “Astrophysical Cosmology”, Brück, , Coyne, and Longair, eds. Pont. Acad. Scientiarum Scripta Varia 48, p. 349.Google Scholar
Wall, J., Benn, C.: 1982, in “Extragalactic Radio Sources”, Heeschen, and Wade, eds. p. 441 (Reidel, Dordrecht).Google Scholar
Woltjer, L.: 1978, Phys. Scr. 17, p. 367.CrossRefGoogle Scholar
Wolstencroft, R.D., Gilmore, G. and Williams, P.M.: 1982, preprint.Google Scholar