Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T21:30:45.377Z Has data issue: false hasContentIssue false

The Mixing of Lithium*

Published online by Cambridge University Press:  30 March 2016

E. A. Spiegel*
Affiliation:
Physics Department, New York University

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The observational status of the problem of lithium abundances has been thoroughly detailed in the preceding papers in this symposium, and it is clear why we must consider how matter is mixed from outer convection zones to inner, hotter regions. The need for appropriate mixing mechanisms has also been nicely brought out by Herbig and Wolff, and Böhm has summarized the role of convective mixing. Conventional mixing-length models for the outer convection zones seem to give qualitatively reasonable results for the depletion during pre-main-sequence contraction but do not completely account for the observations, and it seems inescapable that main-sequence depletion of lithium must be considered. I shall therefore simplify the discussion of mixing by concentrating on main-sequence models in the following outline of some possible mixing processes, though most of the remarks to be made should apply generally to other phases. I shall also pretend that there is one principle mechanism (or combination of them) that must be found, though stars in different evolutionary phases, or with different masses, may deplete lithium quite differently. Further, I shall use the Sun as an illustration in general since we know some important details about it that are not always known for other stars.

Type
Joint Discussions
Copyright
Copyright © Reidel 1968

Footnotes

*

Prepared mainly during the tenure of a National Science Foundation Senior Postdoctoral Fellowship (1966-67) at the Department of Applied Mathematics and Theoretical Physics, Cambridge.

References

1. Herbig, G.H., Wolff, R.J. (1966) Ann. Astrophys., 29, 593.Google Scholar
2. Böhm, K.H. (1966) Zts. f. Naturforsch., 21, 1107.CrossRefGoogle Scholar
3. Hayashi, C., Nakano, T. (1963) Prog. Theor. Phys., 30, 460.CrossRefGoogle Scholar
4. Ezer, D., Cameron, A.G.W. (1965) Can. J. Phys., 43, 1497.CrossRefGoogle Scholar
5. Bodenheimer, P. (1965) Astrophys. J., 142, 451.CrossRefGoogle Scholar
6. Böhm-Vitense, E. (1958) Z. Astroph., 46, 108.Google Scholar
7. Baker, N.H., Temesvary, S. (1966) Tables of Convective Stellar Envelope Models, 2nd ed., Report from Goddard Inst. for Space Studies.Google Scholar
8. Schwarzschild, M. (1958) Structure and Evolution of the Stars, Princeton University Press, Princeton.CrossRefGoogle Scholar
9. Weymann, R., Sears, R.L., (1965) Astrophys. J., 142, 174.CrossRefGoogle Scholar
10. Veronis, G. (1963) Astrophys. J., 137, 641.CrossRefGoogle Scholar
11. Iben, I. (1965) Astrophys. J., 142, 1447.CrossRefGoogle Scholar
12. Noyes, R.W. (1967) in Aerodynamic Phenomena in Stellar Atmospheres, Ed. by Thomas, R.N., Academic Press, New York, p. 293.Google Scholar
13. Leighton, R. (1963) A. Rev. Astr. Astrophys., 1. CrossRefGoogle Scholar
14. Bray, R.J., Loughead, R.E. (1967) The Solar Granulation, Chapman and Hall, Ltd., London.Google Scholar
15. Spiegel, E.A. (1966) Trans. I.A.U., 12B, 539.Google Scholar
16. Simon, G., Weiss, N.O. preprint.Google Scholar
17. Böhm, K.H., Stückl, E. (1967) Z. Astroph., 66, 487.Google Scholar
18. Baker, N.H., Spiegel, E.A. unpublished.Google Scholar
19. Proudman, I. (1956) J. Fluid Mech., 1, 505.CrossRefGoogle Scholar
20. Stewartson, K. (1957) J. Fluid Mech., 3, 17.CrossRefGoogle Scholar
21. Moore, D.W., Fultz, D. unpublished film.Google Scholar
22. Hide, R. (1962) ‘Some Thoughts on Rotating Fluids’. M.I.T. mimeographed notes.Google Scholar
23. Vitense, E. (1953) Z. Astroph., 32, 135.Google Scholar
24. Saslaw, W.C., Schwarzschild, M. (1965) Astrophys. J., 142, 1468.CrossRefGoogle Scholar
25. Moore, D.W. (1967) in Aerodynamic Phenomena in Stellar Atmospheres, Ed. by Thomas, R.N., p. 405.Google Scholar
26. Morton, B.R., Taylor, G.I., Turner, J.S. (1956) Proc. Roy. Soc., A234, 1.Google Scholar
27. Scorer, R.S. (1957) J. Fluid Mech., 2, 583.CrossRefGoogle Scholar
28. Böhm, K.H. (1963) Astrophys. J., 137, 881.CrossRefGoogle Scholar
29. Böhm, K.H. (1963) Astrophys. J., 138, 298.CrossRefGoogle Scholar
30. Böhm, K.H. (1967) in Aerodynamic Phenomena in Stellar Astmopheres, Ed. by Thomas, R.N., Academic Press, New York, p. 367.Google Scholar
31. Mestel, L. (1965) in Stars and Stellar Systems, Ed. by Aller, and McLaughlin, , Univ. of Chicago Press, Chicago 8.Google Scholar
32. Schatzman, E. (1962) Ann. Astrophys., 25, 18.Google Scholar
33. Brandt, J.C. (1966) Astrophys. J., 144, 1221.CrossRefGoogle Scholar
34. Weber, E.J., Davis, L. Jr., (1967) Astrophys. J., 148, 217.CrossRefGoogle Scholar
35. Mestel, L. Observatory (in press).Google Scholar
36. Dicke, R.H. (1964) Nature, 202, 432.CrossRefGoogle Scholar
37. Roxburgh, I.W. (1965) Icarus, 4, 549.CrossRefGoogle Scholar
38. Deutch, A.J. (1967) Science, 156, 236.CrossRefGoogle Scholar
39. Goldreich, P., Schubert, G. Astrophys. J. (in press).Google Scholar
40. Howard, L.N., Moore, D.W., Spiegel, E.A. (1967) Nature, 214, 5095.CrossRefGoogle Scholar
41. Rayleigh, Lord (1920) Scientific Papers, vol. VI, Cambridge, p. 447.Google Scholar
42. Chandrasekhar, S. (1961) Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford.Google Scholar
43. Taylor, G.I. (1923) Phil. Trans. Roy. Soc. (London), A223, 289.Google Scholar
44. Rintel, L. (1961) Thesis, Technion.Google Scholar
45. Lieber, R., Rintel, L. (1964) Trans. A.G.U.Google Scholar
46. Townsend, A.A. (1958) J. Fluid Mech., 4, 361.CrossRefGoogle Scholar
47. Moore, D.W., Spiegel, E.A. (1964) Astrophys. J., 139, 48.CrossRefGoogle Scholar
48. Barcilon, V., Pedlosky, J. (1967) J.Fluid Mech., 29, 1.CrossRefGoogle Scholar
49. Barcilon, V., Pedlosky, J. (1967) J. Fluid Mech., 29, 609.CrossRefGoogle Scholar
50. Dicke, R.H. (1967) Astrophys. J., 149, L121.CrossRefGoogle Scholar
51. Einstein, A. Essay on meandering of rivers in The World As I See It.Google Scholar
52. Bondi, H., Lyttleton, R.A. (1948) Proc. Camb. Phil. Soc., 44, 345.CrossRefGoogle Scholar
53. Charney, J.G., Eliassen, A. (1949) Tellus, 1, 38.CrossRefGoogle Scholar
54. Greenspan, H., Howard, L.N. (1963) J. Fluid Mech., 17, 385.CrossRefGoogle Scholar
55. Prandtl, L. (1952) Essentials of Fluid Dynamics, Blackie and Son, Ltd., London, p. 356.Google Scholar
56. Bretherton, F., Spiegel, E.A. to be published.Google Scholar
57. Holton, J.R. (1965) J.Atmos. Sci., 22, 402.2.0.CO;2>CrossRefGoogle Scholar
58. Pedlosky, J. (1967) J. Fluid Mech., 28, 463.CrossRefGoogle Scholar
59. Conti, P.S. preprint.Google Scholar
60. Babcock, H.W. (1961) Astrophys. J., 133, 572.CrossRefGoogle Scholar
61. Cowling, T.G. (1953) in The Sun, Ed. by Kuiper, G.P., Univ. of Chicago Press, Chicago.Google Scholar
62. Kraft, R.P. Astrophys. J. (in press).Google Scholar
63. Mestel, L. Plasma Astrophysics, 39th Enrico Fermi School (to be published).Google Scholar
64. Cowling, T.G. (1965) in Stellar and Solar Magnetic Fields, Ed. by R.Lüst, , North-Holland Publ. Co., Amsterdam.Google Scholar
65. Fricke, K. (1967) Dissertation, Göttingen.Google Scholar