Skip to main content Accessibility help
×
Home

Martian Surface Composition as Determined by the MGS Thermal Emission Spectrometer

  • Steve R. Ruff (a1), Philip R. Christensen (a1), Joshua L. Bandfield (a1), Victoria E. Hamilton (a1), Hugh H. Kieffer (a2), Richard V. Morris (a3), Melissa D. Lane (a3) and Michael C. Malin (a4)...

Abstract

The surface composition of Mars has been investigated using the Thermal Emission Spectrometer (TES) instrument during the mapping phase of the Mars Global Surveyor mission. The TES has mapped ~85% of the Martian surface at a resolution of 3-9 km. Separation of the atmospheric dust, water-ice cloud, CO2, water vapor, and surface components has been accomplished using radiative transfer and deconvolution. Two distinct surface compositional units have been mapped; (1) a basalt with plagioclase feldspar, Ca-rich pyroxene, minor sheet silicates; and (2) a basaltic andesite with silica glass, plagioclase, and minor pyroxene. Three large-scale (100’s km) accumulations of hematite have been found in Sinus Meridiani, Aram Chaos and Ophir/Candor Chasms. These regions are interpreted to be formed by aqueous precipitation under either ambient or hydrothermal conditions. No surfaces with detectable abundances of carbonate have been found. The albedo of the surface has been mapped with an absolute accuracy of ~1-2% and significant changes in surface albedo have occurred from the orbital measurements obtained by the Viking IRTM instrument.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Martian Surface Composition as Determined by the MGS Thermal Emission Spectrometer
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Martian Surface Composition as Determined by the MGS Thermal Emission Spectrometer
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Martian Surface Composition as Determined by the MGS Thermal Emission Spectrometer
      Available formats
      ×

Copyright

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed