Skip to main content Accessibility help
×
Home

Systematic study of spatiotemporal influences on temporal contrast in the focal region in large-aperture broadband ultrashort petawatt lasers

  • Ping Zhu (a1), Xinglong Xie (a1), Jun Kang (a1), Qingwei Yang (a1), Haidong Zhu (a1), Ailin Guo (a1), Meizhi Sun (a1), Qi Gao (a1), Ziruo Cui (a1), Xiao Liang (a1), Shunhua Yang (a1), Dongjun Zhang (a1) and Jianqiang Zhu (a1)...

Abstract

Temporal contrast is one of the crucial physical determinants which guarantee the successful performance of laser–matter interaction experiments. We generally reviewed the influences on the temporal contrast in three categories of noises based on the requirement by the physical mechanisms. The spatiotemporal influences on temporal contrast at the focal region of the chromatic aberration and propagation time difference introduced by large-aperture broadband spatial filters, which were spatiotemporally coupled with compression and focusing, were calculated and discussed with a practical case in SG-II 5 PW ultrashort petawatt laser. The system-wide spatiotemporal coupling existing in large-aperture broadband ultrashort petawatt lasers was proved to be one of the possible causes of temporal contrast degradation in the focal region.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Systematic study of spatiotemporal influences on temporal contrast in the focal region in large-aperture broadband ultrashort petawatt lasers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Systematic study of spatiotemporal influences on temporal contrast in the focal region in large-aperture broadband ultrashort petawatt lasers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Systematic study of spatiotemporal influences on temporal contrast in the focal region in large-aperture broadband ultrashort petawatt lasers
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: X. Xie and J. Zhu, Shanghai Institute of Optics and Fine Mechanics, CAS, 390 Qinghe Road, Jiading, Shanghai 201800, China. Emails: xiexl329@mail.shcnc.ac.cn, jqzhu@mail.shcnc.ac.cn

References

Hide All
1. Strickland, D. and Mourou, G. Opt. Commun. 56, 219 (1985).
2. Danson, C. Hillier, D. Hopps, N. and Neely, D. High Power Laser Sci. Eng. 3, e3 (2015).
3. Artem, V. K. Gonoskov, A. A. Efim, A. K. and Aleksandr, M. S. Phys.-Usp. 54, 9 (2011).
4. Pirozhkov, A. S. Fukuda, Y. Nishiuchi, M. Kiriyama, H. Sagisaka, A. Ogura, K. Mori, M. Kishimoto, M. Sakaki, H. Dover, N. P. Kondo, K. Nakanii, N. Huang, K. Kanasaki, M. Kondo, K. and Kando, M. Opt. Express 25, 20486 (2017).
5. Umstadter, D. Phys. Plasmas 8, 1774 (2001).
6. Flacco, A. Ceccotti, T. George, H. Monot, P. Martin, P. Réau, F. Tcherbakoff, O. d’Oliveira, P. Sylla, F. Veltcheva, M. Burgy, F. Tafzi, A. Malka, V. and Batani, D. Nucl. Instrum. Methods Phys. Res. 620, 18 (2010).
7. Mckenna, P. Lindau, F. Lundh, O. Neely, D. Persson, A. and Wahlstrom, C. G. Phil. Trans. Math. Phys. Engng. Sci. 364, 711 (2006).
8. Buffechoux, S. Nakatsutsumi, M. Andreev, A. Zeil, K. Burris, T. Sarri, G. Amin, M. Antici, P. Fourmaux, S. Gaillard, S. Mancic, A. Tampo, M. Pépin, H. Audebert, P. Willi, O. Cowan, T. Borghesi, M. and Fuchs, J. AIP Conf. Proc. 1228, 279 (2010).
9. Andreev, A. Ceccotti, T. Levy, A. Platonov, K. and Martin, Ph. New J. Phys. 12, 045007 (2010).
10. Kalashnikov, M. Andreev, A. and Schönnagel, H. Proc. SPIE 7501, 750104 (2009).
11. Akturk, S. Gu, X. Bowlan, P. and Trebino, R. J. Optics 12, 20 (2010).
12. Zhu, P. Xie, X. Ouyang, X. and Zhu, J. High Power Laser Sci. Eng. 2, e42 (2014).
13. Bagnoud, V. and Wagner, F. High Power Laser Sci. Eng. 4, e39 (2016).
14. Braun, A. Kopf, D. Jung, I. D. Rudd, J. V. Cheng, H. Weingarten, K. J. Keller, U. and Mourou, G. Opt. Lett. 20, 1889 (1995).
15. Devaux, F. and Lantz, E. Eur. Phys. J. D 8, 117 (2000).
16. Bromage, J. Rothhardt, J. Hädrich, S. Dorrer, C. Jocher, C. Demmler, S. Limpert, J. Tünnermann, A. and Zuegel, J. D. Opt. Express 19, 16797 (2011).
17. Didenko, N. V. Konyashchenko, A. V. Lutsenko, A. P. and Tenyakov, S. Y. Opt. Express 16, 3178 (2008).
18. Osvay, K. Csatári, M. Ross, I. N. Persson, A. and Wahlstrom, C. G. Laser Part. Beams 23, 327 (2005).
19. Forget, N. Cotel, A. Brambrink, E. Audebert, P. Le Blanc, C. Jullien, A. Albert, O. and Chériaux, G. Opt. Lett. 30, 2921 (2005).
20. Ross, I. N. New, G. H. C. and Bates, P. K. Opt. Commun. 273, 510 (2007).
21. Dorrer, C. J. Opt. Soc. Am. B 24, 3048 (2007).
22. Papadopoulos, D. N. Zou, J. P. Le Blanc, C. Chériaux, G. Georges, P. Druon, F. Mennerat, G. Ramirez, P. Martin, L. Fréneaux, A. Beluze, A. Lebas, N. Monot, P. Mathieu, F. and Audebert, P. High Power Laser Sci. Eng. 4, e34 (2016).
23. Dorrer, C. and Bromage, J. Opt. Express 16, 3058 (2008).
24. Bor, Z. Opt. Lett. 14, 119 (1989).
25. Bor, Z. J. Mod. Opt. 35, 1907 (1988).
26. Treacy, E. B. IEEE J. Quantum Electron. QE 5, 454 (1969).
27. Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).
28. Born, M. and Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).
29. Jeong, T. M. Ko, D. K. and Lee, J. J. Korean Phys. Soc. 52, 1767 (2008).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed