Skip to main content Accessibility help
×
Home

Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding

  • Yingxia Wei (a1), Yaoxiang Liu (a1), Tie-Jun Wang (a1), Na Chen (a1), Jingjing Ju (a1), Yonghong Liu (a1), Haiyi Sun (a1), Cheng Wang (a1), Jiansheng Liu (a1), Haihe Lu (a1), See Leang Chin (a2) and Ruxin Li (a1)...

Abstract

We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge (CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation (FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: T.-J. Wang, No. 390 Qinghe Road, Jiading District, Shanghai, 201899, China. Email: tiejunwang@siom.ac.cn

References

Hide All
1.Silberberg, Y. Opt. Lett. 15, 1282 (1990).
2.Braun, A. Korn, G. Liu, X. Du, D. Squier, J. and Mourou, G. Opt. Lett. 20, 73 (1995).
3.Chin, S. L. Femtosecond Laser Filamentation (Springer, New York, 2010).
4.Chin, S. L. Wang, T.-J. Marceau, C. Wu, J. Liu, J. S. Kosareva, O. Panov, N. Chen, Y. P. Daigle, J.-F. Yuan, S. Azarm, A. Liu, W. W. Seideman, T. Zeng, H. P. Richardson, M. Li, R. and Xu, Z. Z. Laser Phys. 22, 1 (2012).
5.Couairon, A. and Mysyrowicz, A. Phys. Rep. 441, 47 (2007).
6.Chin, S. L. Xu, H. L. Luo, Q. Théberge, F. Liu, W. Daigle, J.-F. Kamali, Y. Simard, P. T. Bernhardt, J. Hosseini, S. A. Sharifi, M. Méjean, G. Azarm, A. Marceau, C. Kosareva, O. Kandidov, V. P. Aközbek, N. Becker, A. Roy, G. Mathieu, P. Simard, J. R. Châteauneuf, M. and Dubois, J. Appl. Phys. B 95, 1 (2009).
7.Xu, H. Cheng, Y. Chin, S.-L. and Sun, HongBo Laser Photon. Rev. 9, 275 (2015).
8.Hauri, C. P. Kornelis, W. Helbing, F. W. Heinrich, A. Couairon, A. Mysyrowicz, A. Biegert, J. and Keller, U. Appl. Phys. B 79, 673 (2004).
9.Ju, J. Liu, J. Wang, C. Sun, H. Wang, W. Ge, X. Li, C. Chin, S. L. Li, R. and Xu, Z. Opt. Lett. 37, 1214 (2012).
10.Rohwetter, P. Kasparian, J. Stelmaszczyk, K. Hao, Z. Henin, S. Lascoux, N. Nakaema, W. M. Petit, Y. Queißer, M. Salamé, R. Salmon, E. Wöste, L. and Wolf, J.-P. Nat. Photon. 4, 451 (2010).
11.Joly, P. Petrarca, M. Vogel, A. Pohl, T. Nagy, T. Jusforgues, Q. Simon, P. Kasparian, J. Weber, K. and Wolf, J.-P. Appl. Phys. Lett. 102, 091112 (2013).
12.Luo, Q. Liu, W. and Chin, S. L. Appl. Phys. B 76, 337 (2003).
13.Chu, W. Li, H. Ni, J. Zeng, B. Yao, J. Zhang, H. Li, G. Jing, C. Xie, H. Xu, H. Yamanouchi, K. and Cheng, Y. Appl. Phys. Lett. 104, 091106 (2014).
14.Liu, Y. Ding, P. Lambert, G. Houard, A. Tikhonchuk, V. and Mysyrowicz, A. Phys. Rev. Lett. 115, 133203 (2015).
15.Xu, H. Lötstedt, E. Iwasaki, A. and Yamanouchi, K. Nat. Commun. 6, 8347 (2015).
16.Li, C. Liao, G.-Q. and Li, Y.-T. High Power Laser Sci. Eng. 3, e15 (2015).
17.Wang, T.-J. Yuan, S. Chen, Y. and Chin, S. L. Chin. Opt. Lett. 11, 011401 (2013).
18.Wang, T.-J. Yuan, S. Chen, Y. Daigle, J.-F. Marceau, C. Théberge, F. Châteauneuf, M. Dubois, J. and Chin, S. L. Appl. Phys. Lett. 97, 111108 (2010).
19.Fujii, T. Zhidkov, A. Miki, M. Sugiyama, K. Goto, N. Eto, S. Oishi, Y. Hotta, E. and Nemoto, K. Chin. J. Phys. 52, 440 (2014).
20.Kasparian, J. Ackermann, R. André, Y.-B. Méchain, G. Méjean, G. Prade, B. Rohwetter, P. Salmon, E. Stelmaszczyk, K. Yu, J. Mysyrowicz, A. Sauerbrey, R. Wöste, L. and Wolf, J.-P. Opt. Express 16, 5757 (2008).
21.Forestier, B. Houard, A. Revel, I. Durand, M. André, Y. B. Prade, B. Jarnac, A. Carbonnel, J. LeNevé, M. deMiscault, J. C. Esmiller, B. Chapuis, D. and Mysyrowicz, A. AIP Advances 2, 012151 1 (2012).
22.Zhao, X. M. Diels, J.-C. Wang, C. Y. and Elizondo, J. M. IEEE J. Quantum Electron. 31, 599 (1995).
23.Pépin, H. Comtois, D. Vidal, F. Chien, C. Y. Desparois, A. Johnston, T. W. Kieffer, J. C. La Fontaine, B. Martin, F. Rizk, F. A. M. Potvin, C. Couture, P. Mercure, H. P. Bondiou-Clergerie, A. Lalande, P. and Gallimberti, I. Phys. Plasmas 8, 2532 (2001).
24.Clerici, M. Hu, Y. Lassonde, P. Milián, C. Couairon, A. Christodoulides, D. N. Chen, Z. Razzari, L. Vidal, F. Légaré, F. Faccio, D. and Morandotti, R. Sci. Adv. 1, e1400111 (2015).
25.Ball, L. M. Appl. Opt. 13, 2292 (1974).
26.Greig, J. R. Koopman, D. W. Fernsler, R. F. Pechacek, R. E. Vitkovitsky, I. M. and Ali, A. W. Phys. Rev. Lett. 41, 174 (1978).
27.Greig, J. R. Murphy, D. P. Pechacek, R. E. Raleigh, M. Laikin, E. and Hauver, S. in Digest of Technical Papers of the 5th IEEE Pulsed Power Conference (1985).
28.Uchiyama, T. Hirohashi, M. Miyata, H. and Sakai, T. Laser Kenkyu 16, 267 (1988).
29.Sasaki, J. Kubodera, S. Ozaki, R. and Uchiyama, T. J. Appl. Phys. 60, 3845 (1986).
30.Yamanaka, T. Uchida, S. Shimada, Y. Yasuda, H. Motokoshi, S. Tsubakimoto, K. Kawasaki, Z. Ishikubo, Y. Adachi, M. and Yamanaka, C. Proc. SPIE 3343, 281 (1998).
31.Strickland, D. and Mourou, G. Opt. Commun. 56, 219 (1985).
32.Chin, S. L. and Miyazaki, K. Japan. J. Appl. Phys. 38, 2011 (1999).
33.Rodriguez, M. Sauerbrey, R. Wille, H. Wöste, L. Fujii, T. André, Y. B. Mysyrowicz, A. Klingbeil, L. Rethmeier, K. Kalkner, W. Kasparian, J. Salmon, E. Yu, J. and Wolf, J.-P. Opt. Lett. 27, 772 (2002).
34.Tzortzakis, S. Prade, B. Franco, M. Mysyrowicz, A. Hüller, S. and Mora, P. Phys. Rev. E 64, 05740 (2001).
35.Jérôme, K. and Wolf, J.-P. in Progress in Ultrafast Intense Laser Science (Springer, Berlin–Heidelberg, 2010), p. 109.
36.Schmitt-Sody, A. Lucero, A. French, D. Latham, W. P. White, W. and Roach, W. P. Opt. Eng. 53, 0515045 (2014).
37.Wang, T. J. Wei, Y. Liu, Y. Chen, N. Ju, J. Sun, H. Wang, C. Lu, H. Liu, J. Chin, S. L. Li, R. and Xu, Z. Sci. Rep. 5, 18681 (2015).
38.Xu, H. L. Azarm, A. Bernhardt, J. Kamali, Y. and Chin, S. L. Chem. Phys. 360, 171 (2009).
39.Chin, S. L. Xu, H. L. Cheng, Y. Xu, Z. Z. and Yamanouchi, K. Chin. Opt. Lett. 11, 013201 (2013).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding

  • Yingxia Wei (a1), Yaoxiang Liu (a1), Tie-Jun Wang (a1), Na Chen (a1), Jingjing Ju (a1), Yonghong Liu (a1), Haiyi Sun (a1), Cheng Wang (a1), Jiansheng Liu (a1), Haihe Lu (a1), See Leang Chin (a2) and Ruxin Li (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.