Skip to main content Accessibility help
×
Home

Role of magnetic field evolution on filamentary structure formation in intense laser–foil interactions

  • M. King (a1), N. M. H. Butler (a1), R. Wilson (a1), R. Capdessus (a1), R. J. Gray (a1), H. W. Powell (a1), R. J. Dance (a1), H. Padda (a1), B. Gonzalez-Izquierdo (a1), D. R. Rusby (a2), N. P. Dover (a3), G. S. Hicks (a3), O. C. Ettlinger (a3), C. Scullion (a4), D. C. Carroll (a2), Z. Najmudin (a3), M. Borghesi (a4), D. Neely (a1) (a2) and P. McKenna (a1)...

Abstract

Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period. This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive, via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Role of magnetic field evolution on filamentary structure formation in intense laser–foil interactions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Role of magnetic field evolution on filamentary structure formation in intense laser–foil interactions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Role of magnetic field evolution on filamentary structure formation in intense laser–foil interactions
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: P. McKenna, SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK. Email: paul.mckenna@strath.ac.uk

References

Hide All
1. Daido, H. Nishiuchi, M. and Pirozhkov, A. S. Rep. Prog. Phys. 75, 056401 (2012).
2. Macchi, A. Borghesi, M. and Passoni, M. Rev. Mod. Phys. 85, 751 (2013).
3. Patel, P. K. Mackinnon, A. J. Key, M. H. Cowan, T. E. Foord, M. E. Allen, M. Price, D. F. Ruhl, H. Springer, P. T. and Stephens, R. Phys. Rev. Lett. 91, 125004 (2003).
4. Borghesi, M. Campbell, D. H. Schiavi, A. Haines, M. G. Willi, O. MacKinnon, A. J. Patel, P. Gizzi, L. A. Galimberti, M. Clarke, R. J. Pegoraro, F. Ruhl, H. and Bulanov, S. Phys. Plasmas 9, 5 (2002).
5. Mackinnon, A. J. Patel, P. K. Town, R. P. Edwards, M. J. Phillips, T. Lerner, S. C. Price, D. W. Hicks, D. Key, M. H. Hatchett, S. and Wilks, S. C. Rev. Sci. Instrum. 75, 3531 (2004).
6. Bulanov, S. V. and Khoroshkov, V. S. Plasma Phys. Rep. 28, 453 (2002).
7. Roth, M. Cowan, T. E. Key, M. H. Hatchett, S. P. Brown, C. Fountain, W. Johnson, J. Pennington, D. M. Snavely, R. A. Wilks, S. C. Yasuike, K. Ruhl, H. Pegoraro, F. Bulanov, S. V. Campbell, E. M. Perry, M. D. and Powell, H. Phys. Rev. Lett. 86, 436 (2001).
8. Wilks, S. C. Langdon, A. B. Cowan, T. E. Roth, M. Singh, M. Hatchett, S. Key, M. H. Pennington, D. MacKinnon, A. and Snavely, R. A. Phys. Plasmas 8, 542 (2001).
9. Carroll, D. C. McKenna, P. Lundh, O. Lindau, F. Wahlström, C.-G. Bandyopadhyay, S. Pepler, D. Neely, D. Kar, S. Simpson, P. T. Markey, K. Zepf, M. Bellei, C. Evans, R. G. Redaelli, R. Batani, D. Xu, M. H. and Li, Y. T. Phys. Rev. E 76, 065401 (2007).
10. Wagner, F. Deppert, O. Brabetz, C. Fiala, P. Kleinschmidt, A. Poth, P. Schanz, V. A. Tebartz, A. Zielbauer, B. Roth, M. Stöhlker, T. and Bagnoud, V. Phys. Rev. Lett. 116, 205002 (2016).
11. Esirkepov, T. Borghesi, M. Bulanov, S. V. Mourou, G. and Tajima, T. Phys. Rev. Lett. 92, 175003 (2004).
12. Robinson, A. P. L. Zepf, M. Kar, S. Evans, R. G. and Bellei, C. New J. Phys. 10, 013021 (2008).
13. Robinson, A. P. L. Gibbon, P. Zepf, M. Kar, S. Evans, R. G. and Bellei, C. Plasma Phys. Control. Fusion 51, 2 (2009).
14. Schlegel, T. Naumova, N. Tikhonchuk, V. T. Labaune, C. Sokolov, I. V. and Mourou, G. Phys. Plasmas 16, 083103 (2009).
15. Kar, S. Kakolee, K. F. Qiao, B. Macchi, A. Cerchez, M. Doria, D. Geissler, M. McKenna, P. Neely, D. Osterholz, J. Prasad, R. Quinn, K. Ramakrishna, B. Sarri, G. Willi, O. Yuan, X. Y. Zepf, M. and Borghesi, M. Phys. Rev. Lett. 109, 185006 (2012).
16. Macchi, A. Veghini, S. and Pegoraro, F. Phys. Rev. Lett. 103, 085003 (2009).
17. Pegoraro, F. and Bulanov, S. V. Phys. Rev. Lett. 99, 065002 (2007).
18. Tushentsov, M. Kim, A. Cattani, F. Anderson, D. and Lisak, M. Phys. Rev. Lett. 87, 275002 (2001).
19. Vshivkov, V. A. Naumova, N. M. Pegoraro, F. and Bulanov, S. V. Phys. Plasmas 5, 2727 (1998).
20. Gonzalez-Izquierdo, B. Gray, R. J. King, M. Dance, R. J. Wilson, R. McCreadie, J. Butler, N. M. H. Capdessus, R. Hawkes, S. Green, J. S. Borghesi, M. Neely, D. and McKenna, P. Nat. Phys. 12, 505 (2016).
21. Gonzalez-Izquierdo, B. King, M. Gray, R. J. Wilson, R. Dance, R. J. Powell, H. W. Maclellan, D. A. McCreadie, J. Butler, N. M. H. Hawkes, S. Green, J. S. Murphy, C. D. Stockhausen, L. C. Carroll, D. C. Booth, N. Scott, G. G. Borghesi, M. Neely, D. and McKenna, P. Nat. Comms. 7, 12891 (2016).
22. Qiao, B. Kar, S. Geissler, M. Gibbon, P. Zepf, M. and Borghesi, M. Phys. Rev. Lett. 108, 115002 (2012).
23. Higginson, A. Gray, R. J. King, M. Dance, R. J. Williamson, S. D. R. Butler, N. M. H. Wilson, R. Capdessus, R. Armstrong, C. Green, J. S. Hawkes, S. J. Martin, P. Wei, W. Q. Mirfayzi, S. R. Yuan, X. H. Kar, S. Borghesi, M. Clarke, R. J. Neely, D. and McKenna, P. Nat. Comms. 9, 724 (2018).
24. Pegoraro, F. and Bulanov, S. V. Laser Phys. 19, 2 (2009).
25. Sgattoni, A. Sinigardi, S. Fedeli, L. Pegoraro, F. and Macchi, A. Phys. Rev. E 91, 013106 (2015).
26. Palmer, C. A. J. Schreiber, J. Nagel, S. R. Dover, N. P. Bellei, C. Beg, F. N. Bott, S. Clarke, R. J. Dangor, A. E. Hassan, S. M. Hilz, P. Jung, D. Kneip, S. Mangles, S. P. D. Lancaster, K. L. Rehman, A. Robinson, A. P. L. Spindloe, C. Szerypo, J. Tatarakis, M. Yeung, M. Zepf, M. and Najmudin, Z. Phys. Rev. Lett. 108, 225002 (2012).
27. Powell, H. W. King, M. Gray, R. J. MacLellan, D. A. Gonzalez-Izquierdo, B. Stockhausen, L. C. Hicks, G. Dover, N. P. Rusby, D. R. Carroll, D. C. Padda, H. Torres, R. Kar, S. Clarke, R. J. Musgrave, I. O. Najmudin, Z. Borghesi, M. Neely, D. and McKenna, P. New J. Phys. 17, 103033 (2015).
28. Wu, D. Zheng, C. Y. Qiao, B. Zhou, C. T. Yan, X. Q. Yu, M. Y. and He, X. T. Phys. Rev. E 90, 023101 (2014).
29. Weibel, E. S. Phys. Rev. Lett. 2, 83 (1959).
30. Morse, R. L. and Nielson, C. W. Phys. Fluids 14, 830 (1971).
31. Okada, T. and Ogawa, K. Phys. Plasmas 14, 072702 (2007).
32. Scott, G. G. Brenner, C. M. Bagnoud, V. Clarke, R. J. Gonzalez-Izquierdo, B. Green, J. S. Heathcote, R. I. Powell, H. W. Rusby, D. R. Zielbauer, B. McKenna, P. and Neely, D. New J. Phys. 19, 043010 (2017).
33. Göde, S. Rödel, C. Zeil, K. Mishra, R. Gauthier, M. Brack, F.-E. Kluge, T. MacDonald, M. J. Metzkes, J. Obst, L. Rehwald, M. Ruyer, C. Schlenvoigt, H.-P. Schumaker, W. Sommer, P. Cowan, T. E. Schramm, U. Glenzer, S. and Fiuza, F. Phys. Rev. Lett. 118, 194801 (2017).
34. Ziener, Ch. Foster, P. S. Divall, E. J. Hooker, C. J. Hutchinson, M. H. R. Langley, A. J. and Neely, D. J. Appl. Phys. 93, 768 (2003).
35. King, M. Gray, R. J. Powell, H. W. MacLellan, D. A. Gonzalez-Izquierdo, B. Stockhausen, L. C. Hicks, G. S. Dover, N. P. Rusby, D. R. Carroll, D. C. Padda, H. Torres, R. Kar, S. Clarke, R. J. Musgrave, I. O. Najmudin, Z. Borghesi, M. Neely, D. and McKenna, P. Nucl. Instrum. Meth. Phys. Res. A 826, 163 (2016).
36. MacLellan, D. A. Carroll, D. C. Gray, R. J. Booth, N. Gonzalez-Izquierdo, B. Powell, H. W. Scott, G. G. Neely, D. and McKenna, P. Laser Part. Beams 31, 475 (2013).
37. Arber, T. D. Bennett, K. Brady, C. S. Lawrence-Douglas, A. Ramsay, M. G. Sircombe, N. J. Gillies, P. Evans, R. G. Schmitz, H. Bell, A. R. and Ridgers, C. P. Plasma Phys. Control. Fusion 57, 113001 (2015).
38. Rozmus, W. and Tikhonchuk, V. T. Phys. Rev. A 42, 7401 (1990).
39. Wilks, S. C. Phys. Fluids B 5, 7 (1993).
40. Bell, A. R. Davies, J. R. Guerin, S. and Ruhl, H. Plasma Phys. Control. Fusion 39, 653 (1997).
41. Wallace, J. M. Brackbill, J. U. Cranfill, C. W. Forslund, D. W. and Mason, R. J. Phys. Fluids 30, 4 (1987).
42. Sentoku, Y. Cowan, T. E. Kemp, A. and Ruhl, H. Phys. Plasmas 10, 5 (2003).
43. Dover, N. P. Palmer, C. A. J. Streeter, M. J. V. Ahmed, H. Albertazzi, B. Borghesi, M. Carroll, D. C. Fuchs, J. Heathcote, R. Hilz, P. Kakolee, K. F. Kar, S. Kodama, R. Kon, A. MacLellan, D. A. McKenna, P. Nagel, S. R. Neely, D. Notley, M. M. Nakatsutsumi, M. Prasad, R. Scott, G. Tampo, M. Zepf, M. Schreiber, J. and Najmudin, Z. New J. Phys. 18, 013038 (2016).
44. Sarri, G. Macchi, A. Cecchetti, C. A. Kar, S. Liseykina, T. V. Yang, X. H. Dieckmann, M. E. Fuchs, J. Galimberti, M. Gizzi, L. A. Jung, R. Kourakis, I. Osterholz, J. Pegoraro, F. Robinson, A. P. L. Romagnani, L. Willi, O. and Borghesi, M. Phys. Rev. Lett. 109, 205002 (2012).
45. Kemp, A. J. Sentoku, Y. Sotnikov, V. and Wilks, S. C. Phys. Rev. Lett. 97, 235001 (2006).
46. Thaury, C. Mora, P. Héron, A. Adam, J. C. and Antonsen, T. M. Phys. Rev. E 82, 026408 (2010).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Role of magnetic field evolution on filamentary structure formation in intense laser–foil interactions

  • M. King (a1), N. M. H. Butler (a1), R. Wilson (a1), R. Capdessus (a1), R. J. Gray (a1), H. W. Powell (a1), R. J. Dance (a1), H. Padda (a1), B. Gonzalez-Izquierdo (a1), D. R. Rusby (a2), N. P. Dover (a3), G. S. Hicks (a3), O. C. Ettlinger (a3), C. Scullion (a4), D. C. Carroll (a2), Z. Najmudin (a3), M. Borghesi (a4), D. Neely (a1) (a2) and P. McKenna (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.