Skip to main content Accessibility help
×
×
Home

Review of the current status of fast ignition research at the IAPCM

  • Hong-bo Cai (a1) (a2), Si-zhong Wu (a1), Jun-feng Wu (a1), Mo Chen (a1), Hua Zhang (a1), Min-qing He (a1), Li-hua Cao (a1) (a2), Cang-tao Zhou (a1) (a2), Shao-ping Zhu (a1) and Xian-tu He (a1) (a2)...

Abstract

We review the present status and future prospects of fast ignition (FI) research of the theoretical group at the IAPCM (Institute of Applied Physics and Computational Mathematics, Beijing) as a part of the inertial confinement fusion project. Since the approval of the FI project at the IAPCM, we have devoted our efforts to improving the integrated codes for FI and designing advanced targets together with the experimental group. Recent FI experiments [K. U. Akli et al., Phys. Rev. E 86, 065402 (2012)] showed that the petawatt laser beam energy was not efficiently converted into the compressed core because of the beam divergence of relativistic electron beams. The coupling efficiency can be improved in three ways: (1) using a cone–wire-in-shell advanced target to enhance the transport efficiency, (2) using external magnetic fields to collimate fast electrons, and (3) reducing the prepulse level of the petawatt laser beam. The integrated codes for FI, named ICFI, including a radiation hydrodynamic code, a particle-in-cell (PIC) simulation code, and a hybrid fluid–PIC code, have been developed to design this advanced target at the IAPCM. The Shenguang-II upgraded laser facility has been constructed for FI research; it consists of eight beams (in total $24~ {\rm kJ}/3\omega $ , 3 ns) for implosion compression, and a heating laser beam (0.5–1 kJ, 3–5 ps) for generating the relativistic electron beam. A fully integrated FI experiment is scheduled for the 2014 project.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Review of the current status of fast ignition research at the IAPCM
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Review of the current status of fast ignition research at the IAPCM
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Review of the current status of fast ignition research at the IAPCM
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .

Corresponding author

Correspondence to: Hong-bo Cai, Institute of Applied Physics and Computational Mathematics, Beijing 100094, People’s Republic of China. Email: cai˙hongbo@iapcm.ac.cn

References

Hide All
1. Tabak, M. Hammer, J. Glinsky, M. E. Kruer, W. L. Wilks, S. C. Woodworth, J. Campbell, E. M. Perry, M. D. and Mason, R. J. Phys. Plasmas 1, 1626 (1994).
2. Atzeni, S. Schiavi, A. Honrubia, J. J. Ribeyre, X. Schurtz, G. Nicolai, Ph. Olazabal-Loume, M. Bellei, C. Evans, R. G. and Davies, J. R. Phys. Plasmas 15, 056311 (2008).
3. Honrubia, J. J. and Meyer-ter-Vehn, J. Plasma Phys. Control. Fusion 51, 014008 (2009).
4. Key, M. H. Adam, J. C. Akli, K. U. Borghesi, M. Chen, M. H. Evans, R. G. Freeman, R. R. Habara, H. Hatchett, S. P. Hill, J. M. Heron, A. King, J. A. Kodama, R. Lancaster, K. L. Mackinnon, A. J. Patel, P. Phillips, T. Romagnani, L. Snavely, R. A. Stephens, R. Stoeckl, C. Town, R. Toyama, Y. Zhang, B. Zepf, M. and Norreys, P. A. Phys. Plasmas 15, 022701 (2008).
5. An assessment of the prospects for inertial fusion energy, The National Academies Press, Washington, DC (2013).
6. Kodama, R. Shiraga, H. Shigemori, K. Toyama, Y. Fujioka, S. Azechi, H. Fujita, H. Habara, H. Hall, T. Izawa, Y. Jitsuno, T. Kitagawa, Y. Krushelnick, K. M. Lancaster, K. L. Mima, K. Nagai, K. Nakai, M. Nishimura, H. Norimatsu, T. Norreys, P. A. Sakabe, S. Tanaka, K. A. Youssef, A. Zepf, M. and Yamanaka, T. Nature 418, 933 (2002) ; R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanakaka, Y. Toyama, T. Yamanaka and M. Zepf Nature 412, 798 (2001).
7. Theobald, W. Solodov, A A. Stoeckl, C. Anderson, K. S. Betti, R. Boehly, T. R. Craxton, R. S. Delettrez, J. A. Dorrer, C. Frenje, J. A. Glebov, V. Yu. Habara, H. Tanaka, K. A. Knauer, J. P. Lauck, R. Marshall, F. J. Marshall, K. L. Meyerhofer, D. D. Nilson, P. M. Patel, P. K. Chen, H. Sangster, T. C. Seka, W. Sinenian, N. Ma, T. Beg, F. N. Giraldez, E. and Stephens, R. B. Phys. Plasmas 18, 056305 (2011).
8. Ma, T. Sawada, H. Patel, P. K. Chen, C. D. Divol, L. Higginson, D. P. Kemp, A. J. Key, M. H. Larson, D. J. Le Pape, S. Link, A. MacPhee, A. G. McLean, H. S. Ping, Y. Stephens, R. B. Wilks, S. C. and Beg, F. N. Phys. Rev. Lett. 108, 115004 (2012).
9. Stephens, R. B. Hatchett, S. P. Tabak, M. Stoeckl, C. Shiraga, H. Fujioka, S. Bonino, M. Nikroo, A. Petrasso, R. Sangster, T. C. Smith, J. and Tanaka, K. A. Phys. Plasmas 12, 056312 (2005).
10. Lancaster, K. L. Green, J. S. Hey, D. S. Akli, K. U. Davies, J. R. Clarke, R. J. Freeman, R. R. Habara, H. Key, M. H. Kodama, R. Krushelnick, K. Murphy, C. D. Nakatsutsumi, M. Simpson, P. Stephens, R. Stoeckl, C. Yabuuchi, T. Zepf, M. and Norreys, P. A. Phys. Rev. Lett. 98, 125002 (2007).
11. Green, J. S. Ovchinnikov, V. M. Evans, R. G. Akli, K. U. Azechi, H. Beg, F. N. Bellei, C. Freeman, R. R. Habara, H. Heathcote, R. Key, M. H. King, J. A. Lancaster, K. L. Lopes, N. C. Ma, T. Mackinnon, A. J. Markey, K. McPhee, A. Najmudin, Z. Nilson, P. Onofrei, R. Stephens, R. Takeda, K. Tanaka, K. A. Theobald, W. Tanimoto, T. Waugh, J. Van Woerkom, L. Woolsey, N. C. Zepf, M. Davies, J. R. and Norreys, P. A. Phys. Rev. Lett. 100, 015003 (2008).
12. Kar, S. Robinson, A. P. L. Carroll, D. C. Lundh, O. Markey, K. McKenna, P. Norreys, P. and Zepf, M. Phys. Rev. Lett. 102, 055001 (2009).
13. Robinson, A. P. L. Sherlock, M. and Norreys, P. A. Phys. Rev. Lett. 100, 025002 (2008) ; A. P. L. Robinson and M. Sherlock Phys. Plasmas 14, 083105 (2007).
14. Ramakrishna, B. Kar, S. Robinson, A. P. L. Adams, D. J. Markey, K. Quinn, M. N. Yuan, X. H. McKenna, P. Lancaster, K. L. Green, J. S. Scott, R. H. H. Norreys, P. A. Schreiber, J. and Zepf, M. Phys. Rev. Lett. 105, 135001 (2010).
15. Robinson, A. P. L. Key, M. H. and Tabak, M. Phys. Rev. Lett. 125004 (2012).
16. Scott, R. H. H. Beaucourt, C. Schlenvoigt, H.-P. Markey, K. Lancaster, K. L. Ridgers, C. P. Brenner, C. M. Pasley, J. Gray, R. J. Musgrave, I. O. Robinson, A. P. L. Li, K. Notley, M. M. Davies, J. R. Baton, S. D. Santos, J. J. Feugeas, J.-L. Nicolai, Ph. Malka, G. Tikhonchuk, V. T. McKenna, P. Neely, D. Rose, S. J. and Norreys, P. A. Phys. Rev. Lett. 109, 015001 (2012).
17. Sentoku, Y. D’Humierres, E. Romagnani, L. Audebert, P. and Fuchs, J. Phys. Rev. Lett. 107, 135005 (2011).
18. Debayle, A. Honrubia, J. J. d’Humieres, E. and Tikhonchuk, V. T. Phys. Rev. E 82, 036405 (2010).
19. Strozzi, D. J. Tabak, M. Larson, D. J. Divol, L. Kemp, A. J. Bellei, C. Marinak, M. M. and Key, M. H. Phys. Plasmas 19, 072711 (2012).
20. Van Woerkom, L. Akli, K. U. Bartal, T. Beg, F. N. Chawla, S. Chen, C. D. Chowdhury, E. Freeman, R. R. Hey, D. Key, M. H. King, J. A. Link, A. Ma, T. Mackinnon, A. J. MacPhee, A. G. Offermann, D. Ovchinnikov, V. Patel, P. K. Schumacher, D. W. Stephens, R. B. and Tsui, Y. Y. Phys. Plasmas 15, 056304 (2008).
21. Pei, W. B. Commun. Comput. Phys. 2, 255 (2007).
22. Cao, L. H. Chang, T. Q. Pei, W. B. Liu, Z. J. Li, M. and Zheng, C. Y. Plasma Sci. Tech. 10, 18 (2008).
23. Cao, L. H. Pei, W. B. Liu, Z. J. Chang, T. Q. Li, B. and Zheng, C. Y. Plasma Sci. Tech. 8, 269 (2006).
24. Zhou, C. T. He, X. T. and Yu, M. Y. Appl. Phys. Lett. 92, 071502 (2008).
25. Mo, Z. Y. Zhang, A. Q. Cao, X. L. Liu, Q. K. Xu, X. W. An, H. B. Pei, W. B. and Zhu, S. P. Front. Comput. Sci. China. 4, 480 (2010).
26. Cai, H. B. Zhu, S. P. Chen, M. Wu, S. Z. He, X. T. and Mima, K. Phys. Rev. E 83, 036408 (2011).
27. Cai, H. B. Zhu, S. P. He, X. T. Wu, S. Z. Chen, M. Zhou, C. T. Yu, W. and Nagatomo, H. Phys. Plasmas 18, 023106 (2011).
28. Cai, H. B. Zhu, S. P. He, X. T. and Mima, K. EPJ Web of Conference 59, 17017 (2013).
29. Wu, S. Z. Zhou, C. T. and Zhu, S. P. Phys. Plasmas 17, 063103 (2010).
30. Fujioka, S. Zhang, Z. Ishihara, K. Shigemori, K. Hironaka, Y. Johzaki, T. Sunahare, A. Yamamoto, N. Nakashima, H. Watanabe, T. Shiraga, H. Nishimura, H. and Azechi, H. Sci. Rep. 3, 1170 (2013) ; K. Mima Reports in 12th International Workshop on Fast Ignition of Fusion Target Napa Valley, CA, USA 2012.
31. Cai, H. B. Zhu, S. P. and He, X. T. Phys. Plasmas. 20, 072701 (2013).
32. Wang, W. W. Cai, H. B. Jia, Q. and Zhu, S. P. Phys. Plasmas 20, 012703 (2013).
33. Jia, Q. Cai, H. Wang, W. W. Zhu, S. P. Sheng, Z. M. and He, X. T. Phys. Plasmas. 20, 032113 (2013).
34. Baton, S. D. Koenig, M. Fuchs, J. Benuzzi-Mounaix, A. Guillou, P. Loupias, B. Vinci, T. Gremillet, L. Rousseaux, C. Drouin, M. Lefebvre, E. Dorchies, F. Fourment, C. Santos, J.J. Batani, D. Morace, A. Redaelli, R. Nakatsutsumi, M. Kodama, R. Nishida, A. Ozaki, N. Norimatsu, T. Aglitskiy, Y. Atzeni, S. and Schiavi, A. Phys. Plasmas 15, 042706 (2008).
35. Cai, H. B. Mima, K. Sunahara, A. Johzaki, T. Nagatomo, H. Zhu, S. P. and He, X. T. Phys. Plasmas 17, 023106 (2010).
36. MacPhee, A. G. Divol, L. Kemp, A. J. Akli, K. U. Beg, F. N. Chen, C. D. Chen, H. Hey, D. S. Fedosejevs, R. J. Freeman, R. R. Henesian, M. Key, M. H. Le Pape, S. Link, A. Ma, T. Mackinnon, A. J. Ovchinnikov, V. M. Patel, P. K. Phillips, T. W. Stephens, R. B. Tabak, M. Town, R. Tsui, Y. Y. Van Woerkom, L. D. Wei, M. S. and Wilks, S. C. Phys. Rev. Lett. 104, 055002 (2010).
37. Akli, K. U. Orban, C. Schumacher, D. Storm, M. Fatenejad, M. Lamb, D. and Freeman, R. R. Phys. Rev. E 86, 065402 (2012).
38. Cai, H. B. Mima, K. Zhou, W. M. Jozaki, T. Nagatomo, H. Sunahara, A. and Mason, R. J. Phys. Rev. Lett. 102, 245001 (2009).
39. Welch, D. R. Rose, D. V. Clark, R. E. Genoni, T. C. and Hughes, T. P. Comput. Phys. Commun. 164, 183 (2004).
40. Davies, J. R. Phys. Rev. E 65, 026407 (2002).
41. Zhou, C. T. He, X. T. and Chew, L. Y. Opt. Lett. 36, 924 (2011).
42. Zhou, C. T. and He, X. T. Phys. Plasmas. 15, 123105 (2008).
43. Zhou, C. T. Wang, X. G. Ruan, S. C. Wu, S. Z. Chew, L. Y. Yu, M. Y. and He, X. T. Phys. Plasmas. 17, 083103 (2010).
44. Zhou, C. T. He, X. T. and Yu, M. Y. Appl. Phys. Lett. 92, 151502 (2008).
45. Zhou, C. T. Cai, T. X. Zhang, W. Y. and He, X. T. Laser Part. Beams 30, 111 (2012).
46. Brown, L. S. Preston, D. L. and Singleton, R. L. Jr. Phys. Rep. 410, 237 (2005).
47. Brown, L. S. and Singleton, R. L. Phys. Rev. E 79, 066407 (2009).
48. Cao, L. H. Chen, M. He, X. T. Yu, W. and Yu, M. Y. Phys. Plasmas. 19, 044503 (2012).
49. Wu, S. Z. Zhou, C. T. Zhu, S. P. Zhang, H. and He, X. T. Phys. Plasmas 18, 022703 (2011).
50. Wu, S. Z. Zhang, H. Zhou, C. T. Zhu, S. P. and He, X. T. EPJ Web of Conferences 59, 05021 (2013).
51. Yokota, T. Nakao, Y. Johzaki, T. and Mima, K. Phys. Plasmas 13, 022702 (2006).
52. Solodov, A. A. and Betti, R. Phys. Plasmas 15, 042707 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

High Power Laser Science and Engineering
  • ISSN: 2095-4719
  • EISSN: 2052-3289
  • URL: /core/journals/high-power-laser-science-and-engineering
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed