Skip to main content Accessibility help
×
Home

A platform for high-repetition-rate laser experiments on the Large Plasma Device

  • D. B. Schaeffer (a1), L. R. Hofer (a1), E. N. Knall (a1), P. V. Heuer (a1), C. G. Constantin (a1) and C. Niemann (a1)...

Abstract

We present a new experimental platform for studying laboratory astrophysics that combines a high-intensity, high-repetition-rate laser with the Large Plasma Device at the University of California, Los Angeles. To demonstrate the utility of this platform, we show the first results of volumetric, highly repeatable magnetic field and electrostatic potential measurements, along with derived quantities of electric field, charge density and current density, of the interaction between a super-Alfvénic laser-produced plasma and an ambient, magnetized plasma.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A platform for high-repetition-rate laser experiments on the Large Plasma Device
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A platform for high-repetition-rate laser experiments on the Large Plasma Device
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A platform for high-repetition-rate laser experiments on the Large Plasma Device
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: D. B. Schaeffer, University of California, Los Angeles, CA 90095, USA. Email: dschaeffer@physics.ucla.edu

References

Hide All
1. Remington, B. A. Drake, R. P. and Ryutov, D. D. Rev. Mod. Phys. 78, 755 (2006).
2. Gregori, G. Reville, B. and Miniati, F. Phys. Rep. 601, 1 (2015).
3. Remington, B. A. Arnett, D. Paul Drake, R. and Takabe, H. Science 284, 1488 (1999).
4. Ryutov, D. D. Remington, B. A. Robey, H. F. and Drake, R. P. Phys. Plasmas 8, 1804 (2001).
5. Schaeffer, D. B. Fox, W. Haberberger, D. Fiksel, G. Bhattacharjee, A. Barnak, D. H. Hu, S. X. and Germaschewski, K. Phys. Rev. Lett. 119, 025001 (2017).
6. Fiksel, G. Fox, W. Bhattacharjee, A. Barnak, D. H. Chang, P.-Y. Germaschewski, K. Hu, S. X. and Nilson, P. M. Phys. Rev. Lett. 113, 105003 (2014).
7. Shaikhislamov, I. F. Zakharov, Y. P. Posukh, V. G. Melekhov, A. V. Antonov, V. M. Boyarintsev, E. L. and Ponomarenko, A. G. Plasma Phys. Control. Fusion 56, 125007 (2014).
8. Gregori, G. Ravasio, A. Murphy, C. D. Schaar, K. Baird, A. Bell, A. R. Benuzzi-Mounaix, A. Bingham, R. Constantin, C. Drake, R. P. Edwards, M. Everson, E. T. Gregory, C. D. Kuramitsu, Y. Lau, W. Mithen, J. Niemann, C. Park, H. Remington, B. A. Reville, B. Robinson, A. P. L. Ryutov, D. D. Sakawa, Y. Yang, S. Woolsey, N. C. Koenig, M. and Miniati, F. Nature 481, 480 (2012).
9. VanZeeland, M. Gekelman, W. Vincena, S. and Dimonte, G. Phys. Rev. Lett. 87, 105001 (2001).
10. Gekelman, W. Van Zeeland, M. Vincena, S. and Pribyl, P. J. Geophys. Res. 108, 1281 (2003).
11. Gekelman, W. Collette, A. and Vincena, S. Phys. Plasmas 14, 062109 (2007).
12. Collette, A. and Gekelman, W. Phys. Rev. Lett. 105, 195003 (2010).
13. Bonde, J. Vincena, S. and Gekelman, W. Phys. Rev. E 92, 051102 (2015).
14. Niemann, C. Constantin, C. G. Schaeffer, D. B. Tauschwitz, A. Weiland, T. Lucky, Z. Gekelman, W. Everson, E. T. and Winske, D. J. Instrum. 7, P03010 (2012).
15. Gekelman, W. Pribyl, P. Lucky, Z. Drandell, M. Leneman, D. Maggs, J. Vincena, S. Van Compernolle, B. Tripathi, S. K. P. Morales, G. Carter, T. A. Wang, Y. and DeHaas, T. Rev. Sci. Instrum. 87, 025105 (2016).
16. Dane, C. Zapata, L. Neuman, W. Norton, M. and Hackel, L. IEEE J. Quantum Electron. 31, 148 (1995).
17. Dane, C. B. and Hackel, L. A. High-Pulse-Energy Phase Conjugated Laser System, Phase Conjugate Laser Optics, (2003).
18. Everson, E. T. Pribyl, P. Constantin, C. G. Zylstra, A. Schaeffer, D. Kugland, N. L. and Niemann, C. Rev. Sci. Instrum. 80, 113505 (2009).
19. Martin, M. J. Bonde, J. Gekelman, W. and Pribyl, P. Rev. Sci. Instrum. 86, 053507 (2015).
20. Heuer, P. Schaeffer, D. Knall, E. Constantin, C. Hofer, L. Vincena, S. Tripathi, S. and Niemann, C. High Energy Density Phys. 22, 17 (2017).
21. Schaeffer, D. B. Bondarenko, A. S. Everson, E. T. Clark, S. E. Constantin, C. G. and Niemann, C. J. Appl. Phys. 120, 043301 (2016).
22. Niemann, C. Gekelman, W. Constantin, C. G. Everson, E. T. Schaeffer, D. B. Clark, S. E. Winske, D. Zylstra, A. B. Pribyl, P. Tripathi, S. K. P. Larson, D. Glenzer, S. H. and Bondarenko, A. S. Phys. Plasmas 20, 012108 (2013).
23. Schaeffer, D. B. Constantin, C. G. Bondarenko, A. S. Everson, E. T. and Niemann, C. Rev. Sci. Instrum. 87, 11E701 (2016).
24. Niemann, C. Gekelman, W. Constantin, C. G. Everson, E. T. Schaeffer, D. B. Bondarenko, A. S. Clark, S. E. Winske, D. Vincena, S. Van Compernolle, B. and Pribyl, P. Geophys. Res. Lett. 41, 7413 (2014).
25. Schaeffer, D. B. Winske, D. Larson, D. J. Cowee, M. M. Constantin, C. G. Bondarenko, A. S. Clark, S. E. and Niemann, C. Phys. Plasmas 24, 041405 (2017).
26. Bondarenko, A. S. Schaeffer, D. B. Everson, E. T. Clark, S. E. Lee, B. R. Constantin, C. G. Vincena, S. Van Compernolle, B. Tripathi, S. K. P. Winske, D. and Niemann, C. Nature Phys. 13, 573 (2017).
27. Huba, J. D. Lyon, J. G. and Hassam, A. B. Phys. Rev. Lett. 59, 2971 (1987).
28. Collette, A. and Gekelman, W. Phys. Plasmas 18, 055705 (2011).
29. Cruz, F. Alves, E. P. Bamford, R. A. Bingham, R. Fonseca, R. A. and Silva, L. O. Phys. Plasmas 24, 022901 (2017).
30. Heuer, P. V. Weidl, M. S. Dorst, R. Schaeffer, D. B. Bondarenko, A. S. Tripathi, S. Van Compernolle, B. Vincena, S. Constantin, C. G. and Niemann, C. Phys. Plasmas, in press (2018).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

A platform for high-repetition-rate laser experiments on the Large Plasma Device

  • D. B. Schaeffer (a1), L. R. Hofer (a1), E. N. Knall (a1), P. V. Heuer (a1), C. G. Constantin (a1) and C. Niemann (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed