Skip to main content Accessibility help
×
Home

Physics and applications with laser-induced relativistic shock waves

  • S. Eliezer (a1) (a2), J. M. Martinez-Val (a1), Z. Henis (a2), N. Nissim (a2), S. V. Pinhasi (a3), A. Ravid (a2), M. Werdiger (a2) and E. Raicher (a2)...

Abstract

The laser-induced relativistic shock waves are described. The shock waves can be created directly by a high irradiance laser or indirectly by a laser acceleration of a foil that collides with a second static foil. A special case of interest is the creation of laser-induced fusion where the created alpha particles create a detonation wave. A novel application is suggested with the shock wave or the detonation wave to ignite a pre-compressed target. In particular, the deuterium–tritium fusion is considered. It is suggested that the collision of two laser accelerated foils might serve as a novel relativistic accelerator for bulk material collisions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Physics and applications with laser-induced relativistic shock waves
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Physics and applications with laser-induced relativistic shock waves
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Physics and applications with laser-induced relativistic shock waves
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: Z. Henis. Applied Physics Division, Soreq NRC, Yavne 81800, Israel. Email: zoharhenis@gmail.com

References

Hide All
1.Hugoniot, P. H. 1 e Partie. J. Ecole Polytech. (Paris) 58, 1 (1887) (Translated in reference 2).
2.Johnson, J. N. and Cheret, R. Classic Papers in Shock Compression Science (Springer, 1998).
3.Zeldovich, Y. B. and Raizer, Y. P. Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic Press Publications, 1966).
4.Eliezer, S. and Ricci, R. A. (Eds.) High Pressure Equation of State: Theory and Application, Enrico Fermi School CXIII 1989 (North-Holland, 1991).
5.Eliezer, S. Ghatak, A. K. Hora, H. and Teller, E. Fundamental of Equation of State (World Scientific, 2002), Previously published as S. Eliezer, A. K. Ghatak, H. Hora and E. Teller, Introduction to Equations of State: Theory and Applications (Cambridge University Press, 1986).
6.Eliezer, S. The Interaction of High-Power Lasers with Plasmas (CRC press, 2002).
7.Eliezer, S. in Laser–Plasma Interactions and Applications, McKenna, P., Neely, D., Bingham, R. and Jaroszynski, D. A.  (eds) 68th Scottish Universities Summer School in Physics, (Springer Publication, 2013), p. 49.
8.Danson, C. Hillier, D. Hopps, N. and Neely, D. High Power Laser Sci. Eng. 3, e3 (2015).
9.The ELI project homepage is http://wwwextreme-light-infrastructure.eu/.
10.Landau, L. D. and Lifshitz, E. M. Fluid Mechanics, 2nd edn (Pergamon Press, 1987).
11.Taub, A. H. Phys. Rev. 74, 328 (1948).
12.Fortov, V. E. and Lomonosov, I. V. Shock Waves 20, 53 (2010).
13.Cauble, R. Phillion, D. W. Hoover, T. J. Holmes, N. C. Kilkenny, J. D. and Lee, R. W. Phys. Rev. Lett. 70, 2102 (1993).
14.Azechi, H. Sakaiya, T. Watari, T. Karasik, M. Saito, H. Ohtani, K. Takeda, K. Hosoda, H. Shiraga, H. Nakai, M. Shigemori, K. Fukoda, S. Murakami, M. Nagamoto, H. Johzaki, T. Gardner, J. Colombant, D. G. Bates, J. W. Velikovich, A. L. Aglitsky, Y. Weaver, J. Obenschain, S. Eliezer, S. Kodama, R. Norimatsu, T. Fujita, H. Mima, K. and Kan, H. Phys. Rev. Lett. 102, 235002 (2009).
15.Hora, H. Physics of Laser Driven Plasmas (John Wiley, 1981).
16.Sauerbrey, R. Phys. Plasmas 3, 4712 (1996).
17.Hora, H. Badziak, J. Read, M. N. Li, Y. T. Liang, T. J. Liu, H. Shang, Z. M. Zhang, J. Osman, F. Miley, G. H. Zhang, W. Y. He, X. T. Peng, H. S. Glowacz, S. Jablonski, S. Wolowski, J. Skladanowski, Z. Jungwirth, K. Rohlena, K. and Ullschmied, J. Phys. Plasmas 14, 072701 (2007).
18.Lalousis, P. Hora, H. Eliezer, S. Martinez-Val, J. M. Moustaizis, S. Miley, G. H. and Mourou, G. Phys. Lett. A 377, 885 (2013).
19.Hora, H. Laser Particle Beams 30, 325 (2012).
20.Lalousis, P. Földes, I. and Hora, H. Laser Particle Beams 30, 233 (2012).
21.Esirkepov, T. Borghesi, M. Bulanov, S. V. Mourou, G. and Tajima, T. Phys Rev. Lett. 92, 175003 (2004).
22.Robinson, P. L. Zepf, M. Kar, S. Evans, R. G. and Bellei, C. New J. Phys. 10, 013021 (2008).
23.Marx, G. Nature 211, 22 (1966).
24.Eliezer, S. Nissim, N. Martinez Val, J. M. Mima, K. and Hora, H. Laser Particle Beams 32, 211 (2014).
25.Naumova, N. Schlegel, T. Tikhonchuk, V. T. Labaune, C. Sokolov, I. V. and Mourou, G. Phys. Rev. Lett 102, 025002 (2009).
26.Eliezer, S. Nissim, N. Raicher, E. and Martinez Val, J. M. Laser Particle Beams 32, 243 (2014).
27.Eliezer, S. Nissim, N. Pinhasi, V. S. Raicher, E. and Martinez Val, J. M. High Power Laser Sci. Eng. 2, e22 (2014) .
28.Eliezer, S. Martinez Val, J. M. and Pinhasi, S. V. Laser Particle Beams 31, 113 (2013).
29.Pegoraro, F. and Bulanov, S. V. Phys. Rev. Lett 99, 065002 (2007).
30.Eliezer, S. Henis, Z. Nissim, N. Pinhasi, S. V. and Martinez Val, J. M. Laser Particle Beams 33, 577 (2015).
31.Bosch, H. S. and Hale, G. M. Nuclear Fusion 32, 611 (1992).
32.Atzeni, S. and Meyer-Ter-Vehn, J. The Physics of Inertial Fusion (Claredon Press, 2004).
33.Eliezer, S. Ravid, A. Henis, Z. Nissim, N. and Martinez Val, J. M. Laser Particle Beams 34, 343 (2016).
34.Landau, L. D. and Stanyukovich, K. P. Dokl. 46, 339 (1945).
35.Nuckolls, J. H. Wood, L. Thiessen, A. and Zimmermann, G. B. Nature 239, 139 (1972).
36.Velarde, G. and Carpintero-Santamaria, N. (Eds.) Inertial Confinement Nuclear Fusion: A Historical Approach by its Pioneers (Foxwell and Davies Pub., 2007).
37.Basov, N. G. Guskov, S. Y. and Feoktistov, L. P. J. Soviet Laser Res. 13, 396 (1992).
38.Tabak, M. E. Hammer, J. Glinsky, M. E. Kruer, W. L. Wilks, S. C. Woodworth, J. Campbell, E. M. Perry, M. D. and Mason, R. J. Phys. Plasmas 1, 1626 (1994).
39.Guskov, S. Y. Plasma Phys. Rep. 39, 1 (2013).
40.Hora, H. Lalousis, P. and Eliezer, S. Phys. Rev. Lett. 53, 1650 (1984).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Physics and applications with laser-induced relativistic shock waves

  • S. Eliezer (a1) (a2), J. M. Martinez-Val (a1), Z. Henis (a2), N. Nissim (a2), S. V. Pinhasi (a3), A. Ravid (a2), M. Werdiger (a2) and E. Raicher (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed