Skip to main content Accessibility help
×
Home

Performance of an elliptical crystal spectrometer for SGII X-ray opacity experiments

  • Ruirong Wang (a1), Honghai An (a1), Zhiyong Xie (a1) and Wei Wang (a1)

Abstract

A new crystal spectrometer for application in X-ray opacity experiments is proposed. The conditions necessary to yield broad spectral coverage with a resolution ${>}$ 500, strong rejection of hard X-ray backgrounds and negligible source broadening for extended sources are formulated. In addition, the design, response modeling and reporting of an elliptical crystal spectrometer in conjunction with a linear detector are presented. The measured results demonstrate the performance of the new crystal spectrometer with a broad energy coverage range, high spectral resolution, and high luminosity (good collection efficiency). This spectrometer can be used in combination with point-projection backlighting techniques as utilized in X-ray opacity experiments. Specifically, the X-ray source, transmission and self-emission spectra of the sample can be measured simultaneously in a single shot, which can reduce the experimental uncertainties from shot-to-shot fluctuations. The new crystal spectrometer has been used in the X-ray opacity experiment to precisely measure the aluminum $K$ -absorption edge shift in the energy range around 1.560 keV in strongly compressed matter. It is demonstrated that the spectrometer can be used to realize measurements of new and unpredictable physical interactions of interest, as well as basic and applied high-energy-density science.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Performance of an elliptical crystal spectrometer for SGII X-ray opacity experiments
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Performance of an elliptical crystal spectrometer for SGII X-ray opacity experiments
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Performance of an elliptical crystal spectrometer for SGII X-ray opacity experiments
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to:  R. Wang, Shanghai Institute of Laser Plasma, Shanghai 201800, China. Email: wangrr59@sina.com

References

Hide All
1. Amarachukwu, E. Martin, N. Young, Uk. J. Anarii, G. B. and David, C. T. J. Appl. Phys. 113, 014907 (2013).
2. Edwards, M. H. Whittaker, D. Mistry, P. Booth, N. Pert, G. J. Tallents, G. J. Rus, B. Mocek, T. Koslová, M. McKenna, C. Delserieys, A. Lewis, C. L. S. Notley, M. and Neely, D. Phys. Rev. Lett. 97, 035001 (2006).
3. Boutoux, G. Batani, D. Burgy, F. Ducret, J.-E. Forestier-Colleoni, P. Hulin, S. Rabhi, N. Duval, A. Lecherbourg, L. Reverdin, C. Jakubowska, K. Szabo, C. I. Bastiani-Ceccotti, S. Consoli, F. Curcio, A. De Angelis, R. Ingenito, F. Baggio, J. and Raffestin, D. Rev. Sci. Instrum. 87, 043108 (2016).
4. Da Silva, L. B. MacGowan, B. J. Kania, D. R. Hammel, B. A. Back, C. A. Hsieh, E. Doyas, R. Iglesias, C. A. Rogers, F. J. and Lee, R. W. Phys. Rev. Lett. 69, 438 (1992).
5. Reverdin, C. Thais, F. Loisel, G. Busquet, M. Bastiani-Ceccotti, S. Blenski, T. Caillaud, T. Ducret, J. E. Foelsner, W. Gilles, D. Gilleron, F. Pain, J. C. Poirier, M. Serres, F. Silvert, V. Soullie, G. Turck-Chieze, S. and Villette, B. Rev. Sci. Instrum. 83, 10E134 (2012).
6. Yang, Z. Yang, J. M. Zhang, J. A. Liu, J. S. Yuan, X. and Jin, F. T. Rev. Sci. Instrum. 80, 043505 (2009).
7. Lake, P. W. Bailey, J. L. Rochau, G. A. Gard, P. Petmecky, D. Bump, M. Joseph, N. R. Moore, T. C. and Nielsen-Weber, L. B. Rev. Sci. Instrum. 77, 10F315 (2006).
8. Knapp, P. F. Pikuz, S. A. Shelkovenko, T. A. Hammer, D. A. and Hansen, S. B. Phys. Plasmas 19, 056302 (2012).
9. Cahill, A. D. Hoyt, C. L. Pikuz, S. A. Shelkovenko, T. and Hammer, D. A. Rev. Sci. Instrum. 85, 103114 (2014).
10. Bailey, J. E. Rochau, G. A. Mancini, R. C. Iglesias, C. A. MacFarlane, J. J. Golovkin, I. E. Blancard, C. Cosse, Ph. and Faussurier, G. Phys. Plasmas 16, 058101 (2009).
11. Wang, R.-R. Chen, W.-M. and Wang, W. Opt. Prec. Eng. 18, 1303 (2010).
12. Henke, B. L. and Jaanimagi, P. A. Rev. Sci. Instrum. 56, 1537 (1985).
13. Wang, R.-R. Wang, W. Wang, C. Dong, J.-Q. Sun, J.-R. and Wan, B.-G. Acta Phys. Sin. 52, 556 (2003).
14. Henke, B. L. Yamada, H. T. and Tanaka, T. J. Rev. Sci. Instrum. 54, 1311 (1983).
15. Zhang, J.-Y. Yang, J.-M. Xu, Y. Yang, G.-H. Yan, J. Meng, G.-W. Ding, Y.-N. and Wang, Y. Acta Phys. Sin. 57, 688 (2008).
16. Meadowcroft, A. L. Bentley, C. D. and Sotott, E. N. Rev. Sci. Instrum. 79, 113102 (2008).
17. Maddox, B. R. Park, H. S. Remington, B. A. Izumi, N. Chen, S. Chen, C. Kimminau, G. Ali, Z. Haugh, M. J. and Ma, Q. Rev. Sci. Instrum. 82, 023111 (2011).
18. Bruneau, J. Decoster, A. Desenne, D. Dumont, H. Breton, J. P. Boivineau, M. Perrine, J. P. Bayle, S. Louis-Jacquet, H. Geindre, J. P. Chenais-Popvics, C. and Gauthier, J. C. Phys. Rev. A 44, R832 (1991).
19. DaSilva, L. Ng, A. Godwal, B. K. Chiu, G. Cottet, F. Richardson, M. C. Jaanimagi, P. A. and Lee, Y. T. Phys. Rev. Lett. 62, 1623 (1989).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Performance of an elliptical crystal spectrometer for SGII X-ray opacity experiments

  • Ruirong Wang (a1), Honghai An (a1), Zhiyong Xie (a1) and Wei Wang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed