Skip to main content Accessibility help
×
Home

Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality

  • Long Huang (a1) (a2), Pengfei Ma (a1) (a2), Daren Meng (a1) (a2), Lei Li (a1) (a2), Rumao Tao (a1) (a2), Rongtao Su (a1) (a2), Yanxing Ma (a1) (a2) and Pu Zhou (a1) (a2)...

Abstract

An all-fiberized high-average-power narrow linewidth ns pulsed laser with linear polarization is demonstrated. The laser system utilizes a typical master oscillator power amplifier (MOPA) configuration. The stimulated Brillouin scattering (SBS) is effectively suppressed due to the short fiber length and large mode area in the main amplifier, combined with the narrow pulse duration smaller than the phonon lifetime of SBS effect. A maximal output power of 466 W is obtained with a narrow linewidth of ${\sim}$ 203.6 MHz, and the corresponding slope efficiency is ${\sim}$ 80.3%. The pulse duration is condensed to be ${\sim}$ 4 ns after the amplification, corresponding to the peak power of 8.8 kW and the pulse energy of $46.6~\unicode[STIX]{x03BC}\text{J}$ . Near-diffraction-limited beam quality with an $M^{2}$ factor of 1.32 is obtained at the output power of 442 W and the mode instability (MI) is observed at the maximal output power. To the best of our knowledge, this is the highest average output power of the all-fiberized narrow linewidth ns pulsed fiber laser with linear polarization and high beam quality, which is a promising source for the nonlinear frequency conversion, laser lidar, and so on.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: P. Zhou, No. 109 Deya Road, Changsha 410073, China. Email: zhoupu203@163.com

References

Hide All
1. Veiko, V. Karlagina, Y. Moskvin, M. Mikhailovskii, V. Odintsova, G. Olshin, P. Pankin, D. Romanov, V. and Yatsuk, R. Opt. Laser. Eng. 96, 63 (2017).
2. Williams, E. Brousseau, E.-B. and Rees, A. Int. J. Adv. Manuf. Technol. 74, 769 (2014).
3. Qiao, J.-P. Zhao, S.-Z. Yang, K.-J. Zhao, J. Li, G.-Q. Li, D.-C. Li, T. Qiao, W.-C. and Wang, Y.-G. Opt. Mater. Express 7, 3998 (2017).
4. Fang, Q. Cui, X.-L. Zhang, Z. Qi, L. Shi, W. Li, J.-H. and Zhou, G.-Q. Opt. Eng. 56, 1 (2017).
5. Su, R.-T. Zhou, P. Wang, X.-L. Zhang, H.-W. and Xu, X.-J. Opt. Lett. 37, 3978 (2012).
6. Lombard, L. Azarian, A. Cadoret, K. Bourdon, P. Goular, D. Canat, G. Jolivet, V. Jaouën, Y. and Vasseur, O. Opt. Lett. 36, 523 (2011).
7. Tsubakimoto, K. Yoshida, H. and Miyanaga, N. Opt. Lett. 42, 3255 (2017).
8. Philippov, V. Codemard, C. Jeong, Y. Alegria, C. Sahu, J. K. Nilsson, J. and Pearson, G. N. Opt. Lett. 29, 2590 (2004).
9. Liu, Y. Liu, J.-Q. and Chen, W.-B. Chin. Opt. Lett. 9, 090604 (2011).
10. Huang, B. Yi, J. Jiang, G.-B. Miao, L.-L. Hu, W. Zhao, C.-J. and Wen, S.-C. Opt. Mater. Express 7, 1220 (2017).
11. Shi, W. Leigh, M. A. Zong, J. Yao, Z.-D. Nguyen, D. T. Arturo, C. P. and Nasser, P. IEEE J. Sel. Top. Quantum Electron. 15, 377 (2009).
12. Morshed, M. Hattori, H. T. Haque, A. and Olbricht, B. C. Appl. Opt. 56, 7611 (2017).
13. Wang, J.-L. Li, S. Xing, Y.-P. Chen, L. Wei, Z.-Y. and Wang, Y.-G. J. Opt. UK 19, 95506 (2017).
14. Xu, Z.-W. Luo, X. Yang, L.-Y. Peng, J.-G. Li, H.-Q. and Li, J.-Y. Appl. Opt. 56, 4971 (2017).
15. Stutzki, F. Jansen, F. Liem, A. Jauregui, C. Limpert, J. and Tunnermann, A. Opt. Lett. 37, 1073 (2012).
16. Shi, W. Petersen, E. B. Yao, Z.-D. Nguyen, D. T. Zong, J. Stephen, M. A. Chavez-Pirson, A. and Peyghambarian, N. Opt. Lett. 35, 2418 (2010).
17. Wang, T.-X. Yan, Z.-J. Mou, C.-B. Zhou, K.-M. and Zhang, L. Appl. Opt. 56, 3583 (2017).
18. Malinowski, A. Gorman, P. Codemard, C. A. Ghiringhelli, F. Boyland, A. J. Marshall, A. Zervas, M. N. and Durkin, M. K. Opt. Lett. 38, 4686 (2013).
19. Hou, Y.-B. Zhang, Q. Qi, S.-X. Feng, X. and Wang, P. Opt. Express 24, 28761 (2016).
20. Leigh, M. Shi, W. Zong, J. and Yao, Z. Appl. Phys. Lett. 92, 1326 (2008).
21. Su, R.-T. Zhou, P. Xiao, H. Wang, X.-L. and Xu, X.-J. Appl. Opt. 51, 3655 (2012).
22. Ran, Y. Su, R.-T. Ma, P.-F. Wang, X.-L. , H.-B. Zhou, P. and Si, L. Opt. Express 23, 25896 (2015).
23. Wang, X. Jin, X.-X. Zhou, P. Wang, X.-L. Xiao, H. and Liu, Z.-J. Opt. Express 23, 4233 (2015).
24. Dvoyrin, V. Klimentov, D. Klepsvik, J. Mazaeva, I. and Sorokina, I. IEEE Photonics Technol. Lett. 28, 2772 (2016).
25. Fang, Q. Shi, W. and Fan, J.-L. IEEE Photonics Technol. Lett. 26, 1676 (2014).
26. Su, R.-T. Zhou, P. Wang, X.-L. Tao, R.-M. and Xu, X.-J. High Power Laser Sci. Eng. 2, 45 (2014).
27. Liu, A. Norsen, M. A. and Mead, R. D. Opt. Lett. 30, 67 (2005).
28. Liu, Z.-J. Ma, P.-F. Su, R.-T. Tao, R.-M. Ma, Y.-X. Wang, X.-L. and Zhou, P. J. Opt. Soc. Am. B 34, A7 (2017).
29. Avdokhin, A. Gapontsev, V. Kadwani, P. Vaupel, A. Samartsev, I. Platonov, N. Yusim, A. and Myasnikov, D. Proc. SPIE 9347, 934704 (2015).
30. Brooks, C. and Teodoro, F. D. Opt. Express 13, 8999 (2005).
31. Yu, H.-L. Tao, R.-M. Wang, X.-L. Zhou, P. and Chen, J.-B. Appl. Opt. 53, 6409 (2014).
32. Ma, P.-F. Tao, R.-M. Huang, L. Wang, X.-L. Zhou, P. and Liu, Z.-J. J. Opt. UK 17 (2015).
33. Yu, H.-L. Wang, X.-L. Zhang, H.-W. Su, R.-T. Zhou, P. and Chen, J.-B. J. Lightwave Technol. 34, 4271 (2016).
34. Xu, S.-H. Yang, Z.-M. Zhang, W.-N. Wei, X.-M. Qian, Q. Chen, D.-D. Zhang, Q.-Y. Shen, S.-X. Peng, M.-Y. and Qiu, J.-R. Opt. Lett. 36, 3708 (2011).
35. Agrawal, G. Nonlinear Fiber Optics (Elsevier/Academic Press, 2007).
36. Huang, L. Zhang, H.-W. Wang, X.-L. and Zhou, P. IEEE Photonics J. 8, 1501407 (2016).
37. Rothenberg, J. E. Thielen, P. A. Wickham, M. and Asman, C. P. Proc. SPIE 6873, 68730O (2008).
38. Su, R.-T. Zhou, P. Wang, X.-L. , H.-B. and Xu, X.-J. Opt. Laser Technol. 57, 1 (2014).
39. Eidam, T. Wirth, C. Jauregui, C. Stutzki, F. Jansen, F. Otto, H. J. Schmidt, O. Schreiber, T. Limpert, J. and Tunnermann, A. Opt. Express 19, 13218 (2011).
40. Tao, R.-M. Ma, P.-F. Wang, X.-L. Zhou, P. and Liu, Z.-J. J. Opt. UK 18, 65501 (2016).
41. Tao, R.-M. Ma, P.-F. Wang, X.-L. Zhou, P. and Liu, Z.-J. Laser Phys. Lett. 14, 25002 (2017).
42. Shi, C. Su, R.-T. Zhang, H.-W. Yang, B.-L. Wang, X.-L. Zhou, P. Xu, X.-J. and Lu, Q.-S. IEEE Photonics J. 9, 1502910 (2017).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed