Skip to main content Accessibility help
×
×
Home

Influence of laser polarization on collective electron dynamics in ultraintense laser–foil interactions

  • Bruno Gonzalez-Izquierdo (a1), Ross J. Gray (a1), Martin King (a1), Robbie Wilson (a1), Rachel J. Dance (a1), Haydn Powell (a1), David A. MacLellan (a1), John McCreadie (a1), Nicholas M. H. Butler (a1), Steve Hawkes (a1) (a2), James S. Green (a2), Chris D. Murphy (a3), Luca C. Stockhausen (a4), David C. Carroll (a2), Nicola Booth (a2), Graeme G. Scott (a1) (a2), Marco Borghesi (a5), David Neely (a1) (a2) and Paul McKenna (a1)...

Abstract

The collective response of electrons in an ultrathin foil target irradiated by an ultraintense ( ${\sim}6\times 10^{20}~\text{W}~\text{cm}^{-2}$ ) laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown that if the target is sufficiently thin that the laser induces significant radiation pressure, but not thin enough to become relativistically transparent to the laser light, the resulting relativistic electron beam is elliptical, with the major axis of the ellipse directed along the laser polarization axis. When the target thickness is decreased such that it becomes relativistically transparent early in the interaction with the laser pulse, diffraction of the transmitted laser light occurs through a so called ‘relativistic plasma aperture’, inducing structure in the spatial-intensity profile of the beam of energetic electrons. It is shown that the electron beam profile can be modified by variation of the target thickness and degree of ellipticity in the laser polarization.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of laser polarization on collective electron dynamics in ultraintense laser–foil interactions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Influence of laser polarization on collective electron dynamics in ultraintense laser–foil interactions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Influence of laser polarization on collective electron dynamics in ultraintense laser–foil interactions
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: P. McKenna, SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK. Email: paul.mckenna@strath.ac.uk

References

Hide All
1. Daido, H. Nishiuchi, M. and Pirozhkov, A. S. Rep. Prog. Phys. 75, 056401 (2012).
2. Macchi, A. Borghesi, M. and Passoni, M. Rev. Mod. Phys. 85, 751 (2013).
3. Faenov, A. Ya. Colgan, J. Hansen, S. B. Zhidkov, A. Pikuz, T. A. Nishiuchi, M. Pikuz, S. A. Skobelev, I. Yu. Abdallah, J. Sakaki, H. Sagisaka, A. Pirozhkov, A. S. Ogura, K. Fukuda, Y. Kanasaki, M. Hasegawa, N. Nishikino, M. Kando, M. Watanabe, Y. Kawachi, T. Masuda, S. Hosokai, T. Kodama, R. and Kondo, K. Sci. Rep. 5, 13436 (2015).
4. Colgan, J. Abdallah, J. Faenov, A. Y. Pikuz, S. A. Wagenaars, E. Booth, N. Culfa, O. Dance, R. J. Evans, R. G. Gray, R. J. Kaempfer, T. Lancaster, K. L. McKenna, P. Rossall, A. L. Skobelev, I. Y. Schulze, K. S. Uschmann, I. Zhidkov, A. G. and Woolsey, N. C. Phys. Rev. Lett. 110, 125001 (2013).
5. Dromey, B. Rykovanov, S. Yeung, M. Hörlein, R. Jung, D. Gautier, D. C. Dzelzainis, T. Kiefer, D. Palaniyppan, S. Shah, R. Schreiber, J. Ruhl, H. Fernandez, J. C. Lewis, C. L. S. Zepf, M. and Hegelich, B. M. Nature Phys. 8, 804 (2012).
6. Kruer, W. L. and Estabrook, K. Phys. Fluids 28, 430 (1985).
7. Mulser, P. and Bauer, D. High Power Laser–Matter Interaction (Springer, 2010).
8. Macchi, A. A Superintense Laser–Plasma Interaction Theory Primer (Springer, 2013).
9. Schlegel, T. Naumova, N. Tikhonchuk, V. T. Labaune, C. Sokolov, I. V. and Mourou, G. Phys. Plasmas 16, 083103 (2009).
10. Esirkepov, T. Borghesi, M. Bulanov, S. V. Mourou, G. and Tajima, T. Phys. Rev. Lett. 92, 175003 (2004).
11. Kodama, R. Takahashi, K. Tanaka, K. A. Tsukamoto, M. Hashimoto, H. Kato, Y. and Mima, K. Phys. Rev. Lett. 77, 4906 (1996).
12. Macchi, A. Veghini, S. and Pegoraro, F. Phys. Rev. Lett. 103, 085003 (2009).
13. Kar, S. Kakolee, K. F. Qiao, B. Macchi, A. Cerchez, M. Doria, D. Geissler, M. McKenna, P. Neely, D. Osterholz, J. Prasad, R. Quinn, K. Ramakrishna, B. Sarri, G. Willi, O. Yuan, X. Y. Zepf, M. and Borghesi, M. Phys. Rev. Lett. 109, 185006 (2012).
14. Vshivkov, V. A. Phys. Plasmas 5, 2727 (1998).
15. Bulanov, S. S. Schroeder, C. B. Esarey, E. and Leemans, W. P. Phys. Plasmas 19, 093112 (2012).
16. Gray, R. J. MacLellan, D. A. Gonzalez-Izquierdo, B. Powell, H. W. Carroll, D. C. Murphy, C. D. Stockhausen, L. C. Rusby, D. R. Scott, G. G. Wilson, R. Booth, N. Symes, D. R. Hawkes, S. J. Torres, R. Borghesi, M. Neely, D. and McKenna, P. New J. Phys. 16, 093027 (2014).
17. Powell, H. W. King, M. Gray, R. J. MacLellan, D. A. Gonzalez-Izquierdo, B. Stockhausen, L. C. Hicks, G. Dover, N. P. Rusby, D. R. Carroll, D. C. Padda, H. Torres, R. Kar, S. Clarke, R. J. Musgrave, I. O. Najmudin, Z. Borghesi, M. Neely, D. and McKenna, P. New J. Phys. 17, 103033 (2015).
18. King, M. Gray, R. J. Powell, H. W. MacLellan, D. A. Gonzalez-Izquierdo, B. Stockhausen, L. C. Hicks, G. S. Dover, N. P. Rusby, D. R. Carroll, D. C. Padda, H. Torres, R. Kar, S. Clarke, R. J. Musgrave, I. O. Najmudin, Z. Borghesi, M. Neely, D. and McKenna, P. Nuc. Instrum. Methods A 829, 163 (2016).
19. Gonzalez-Izquierdo, B. Gray, R. J. King, M. Dance, R. J. Wilson, R. McCreadie, J. Butler, N. M. H. Capdessus, R. Hawkes, S. Green, J. S. Borghesi, M. Neely, D. and McKenna, P. Nature Phys. 12, 505 (2016).
20. Dromey, B. Kar, S. Zepf, M. and Foster, P. Rev. Sci. Instrum. 75, 645 (2004).
21. Arber, T. D. Bennett, K. Brady, C. S. Lawrence-Douglas, A. Ramsay, M. G. Sircombe, N. J. Gillies, P. Evans, R. G. Schmitz, H. Bell, A. R. and Ridgers, C. P. Plasma Phys. Contr. F 57, 1 (2015).
22. Fresnel, A. Ann. Chim Phys. 1, 129 (1816).
23. Stratton, J. A. and Chu, L. J. Phys. Rev. 56, 99 (1939).
24. Scullion, C. Doria, D. Romagnani, L. Sgattoni, A. Naughton, y K. Symes, D.R. McKenna, P. Macchi, A. Zepf, M. Kar, S. and Borghesi, M. (2016) Under review.
25. Gonzalez-Izquierdo, B. King, M. Gray, R. J. Wilson, R. Dance, R. J. Powell, H. MacLellan, D. A. McCreadie, J. Butler, N. M. H. Hawkes, S. Green, J. S. Murphy, C. D. Stockhausen, L. C. Carroll, D. C. Booth, N. Scott, G. G. Borghesi, M. Neely, D. and McKenna, P. Nat. Commun. to be published (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

High Power Laser Science and Engineering
  • ISSN: 2095-4719
  • EISSN: 2052-3289
  • URL: /core/journals/high-power-laser-science-and-engineering
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed