Skip to main content Accessibility help
×
Home

Improvements in long-term output energy performance of Nd:glass regenerative amplifiers

  • Peng Zhang (a1), Youen Jiang (a1), Jiangfeng Wang (a1), Wei Fan (a1), Xuechun Li (a1) and Jianqiang Zhu (a1)...

Abstract

Optical damages, which severely degrade the output energy performance of Nd:glass regenerative amplifiers, are discussed in detail in this paper. By a series of experiments, it has been confirmed that these damages result from laser-induced contamination. Based on this work, several improvements are made to boost output energy performance of the regenerative amplifier. The output energy of the regenerative amplifier after improvements declines 4% after 1000 h of operation, much less than it used to, 60% after 560 h of operation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Improvements in long-term output energy performance of Nd:glass regenerative amplifiers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Improvements in long-term output energy performance of Nd:glass regenerative amplifiers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Improvements in long-term output energy performance of Nd:glass regenerative amplifiers
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: P. Zhang, National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. Email: zplianhe@siom.ac.cn

References

Hide All
1. Haynam, C. A. Wegner, P. J. Auerbach, J. M. Bowers, M. W. Dixit, S. N. Erbert, G. V. Heestand, G. M. Henesian, M. A. Hermann, M. R. Jancaitis, K. S. Manes, K. R. Marshall, C. D. Mehta, N. C. Menapace, J. Moses, E. Murray, J. R. Nostrand, M. C. Orth, C. D. Patterson, R. Sacks, R. A. Shaw, M. J. Spaeth, M. Sutton, S. B. Williams, W. H. Widmayer, C. C. White, R. K. Yang, S. T. and Van Wonterghem, B. M. Appl. Opt. 46, 3276 (2007).
2. Zhu, J. Zhu, J. Li, X. Zhu, B. Ma, W. Liu, D. Liu, C. Lu, X. Fan, W. Liu, Z. Zhao, D. Zhou, S. Zhang, Y. Wang, L. Sun, M. Wang, B. Jiao, Z. Ren, L. Zhang, G. Miao, J. and Lin, Z. Proc. SPIE 10084, 1008405 (2017).
3. Cavailler, C. Plasma Phys. Control. Fusion 47, B389 (2005).
4. Bowers, M. Burkhart, S. Cohen, S. Erbert, G. Heebner, J. Hermann, M. and Jedlovec, D. Proc. SPIE 6451, 64511M (2007).
5. Okishev, A. V. Battaglia, D. Begishev, I. A. and Zuegel, J. D. LLE Rev. 91, 103 (2002).
6. Heebner, M. W. B. J. E. LLNL Report LLNL-TR-401967 (2008).
7. Peng, Y. Wang, J. Zhang, Z. Huang, D. Fan, W. and Li, X. Chin. Opt. Lett. 12, 041402 (2014).
8. Chow, R. Runkel, M. and Taylor, J. R. Appl. Opt. 44, 3527 (2005).
9. Norton, M. A. Donohue, E. E. Hollingsworth, W. G. Feit, M. D. Rubenchik, A. M. and Hackel, R. P. Proc. SPIE 5647, 197 (2005).
10. Negres, R. A. Burke, M. W. DeMange, P. Sutton, S. B. Feit, M. D. and Demos, S. G. Proc. SPIE 6403, 640306 (2006).
11. Riede, W. Allenspacher, P. Schröder, H. Wernham, D. and Lien, Y. Proc. SPIE 5991, 59910H (2005).
12. Riede, W. Allenspacher, P. Schröder, H. Mahnke, P. Paunescu, G. and Wernham, D. Proc. SPIE 7504, 75040T (2009).
13. Wernham, D. Alves, J. Pettazzi, F. and Tighe, A. P. Proc. SPIE 7842, 78421E (2010).
14. Riede, W. Schroeder, H. Bataviciute, G. Wernham, D. Tighe, A. Pettazzi, F. and Alves, J. Proc. SPIE 8190, 81901E (2011).
15. Wang, C. Wei, H. Jiang, Y. Wang, J. Qiao, Z. Guo, J. Fan, W. and Li, X. Chin. Opt. Lett. 14, 121402 (2016).
16. Hovis, F. E. Shepherd, B. A. Radcliffe, C. T. and Maliborski, H. A. Proc. SPIE 2428, 72 (1995).
17. Hovis, F. E. Shepherd, B. A. Radcliffe, C. T. and Maliborski, H. A. Proc. SPIE 2714, 707 (1996).
18. Guéhenneux, G. Bouchut, P. Veillerot, M. Pereira, A. and Tovena, I. Proc. SPIE 5991, 59910F (2005).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed