Skip to main content Accessibility help
×
Home

Generation of high-contrast, joule-level pulses based on Nd:glass chirped pulse amplification laser

  • Xiaoming Lu (a1), Yujie Peng (a1), Yanyan Li (a1), Xinliang Wang (a1) (a2), Xiaoyang Guo (a1), Yi Xu (a1) and Yuxin Leng (a1)...

Abstract

We demonstrate a high-contrast, joule-level Nd:glass laser system operating at 0.5 Hz repetition rate based on a double chirped pulse amplification (CPA) scheme. By injecting high-contrast, high-energy seed pulses into the Nd:glass CPA stage, the pulse energy is amplified to 1.9 J through two optical parametric CPA stages and two Nd:glass amplifiers. The temporal contrast of compressed pulse is measured down to the level of $10^{-8}$ at tens of ps, and $10^{-10}$ near 200 ps before the main pulse, respectively.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Generation of high-contrast, joule-level pulses based on Nd:glass chirped pulse amplification laser
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Generation of high-contrast, joule-level pulses based on Nd:glass chirped pulse amplification laser
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Generation of high-contrast, joule-level pulses based on Nd:glass chirped pulse amplification laser
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: Y. Leng, State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. Email: lengyuxin@siom.ac.cn

References

Hide All
1. Strickland, D. and Mourou, G. Opt. Commun. 56, 219 (1985).
2. Umstadter, D. Phys. Plasmas 8, 1774 (2001).
3. Dorrer, C. Begishev, I. Okishev, A. and Zuegel, J. Opt. Lett. 32, 2143 (2007).
4. Shah, R. C. Johnson, R. P. Shimada, T. Flippo, K. A. Fernandez, J. C. and Hegelich, B. M. Opt. Lett. 34, 2273 (2009).
5. Musgrave, I. Shaikh, W. Galimberti, M. Boyle, A. Hernandez-Gomez, C. Lancaster, K. and Heathcote, R. Appl. Opt. 49, 6558 (2010).
6. Hillier, D. I. Elsmere, S. Girling, M. Hopps, N. Hussey, D. Parker, S. Treadwell, P. Winter, D. and Bett, T. Appl. Opt. 53, 6938 (2014).
7. Wagner, F. Joao, C. Fils, J. Gottschall, T. Hein, J. Körner, J. Limpert, J. Roth, M. Stöhlker, T. and Bagnoud, V. Appl. Phys. B 116, 429 (2014).
8. Dorrer, C. Consentino, A. Irwin, D. Qiao, J. and Zuegel, J. J. Opt. 17, 094007 (2015).
9. Li, Y. Huang, Y. Wang, J. Xu, Y. Lu, X. Wang, D. Leng, Y. Li, R. and Xu, Z. Laser Phys. Lett. 10, 075403 (2013).
10. Lu, X. Peng, Y. Li, Y. Guo, X. Leng, Y. Sui, Z. Xu, Y. and Wang, X. Chin. Opt. Lett. 14, 023201 (2016).
11. Lu, X. M. Leng, Y. X. Sui, Z. Li, Y. Y. Zhang, Z. X. Xu, Y. Guo, X. Y. and Liu, Y. Q. Laser Phys. 24, 105301 (2014).
12. Kalashnikov, M. Risse, E. Schönnagel, H. and Sandner, W. Optics Lett. 30, 923 (2005).
13. Ivanov, V. V. Maksimchuk, A. and Mourou, G. Appl. Opt. 42, 7231 (2003).
14. Bagnoud, V. Zuegel, J. Forget, N. and Le Blanc, C. Opt. Express 15, 5504 (2007).
15. Huang, Y. Zhang, C. Xu, Y. Li, D. Leng, Y. Li, R. and Xu, Z. Opt. Lett. 36, 781 (2011).
16. Kiriyama, H. Mori, M. Nakai, Y. Shimomura, T. Tanoue, M. Akutsu, A. Okada, H. Motomura, T. Kondo, S. and Kanazawa, S. Opt. Commun. 282, 625 (2009).
17. Dorrer, C. and Bromage, J. Opt. Express 16, 3058 (2008).
18. Bromage, J. Dorrer, C. and Jungquist, R. JOSA B 29, 1125 (2012).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed