Skip to main content Accessibility help
×
Home

Fast magnetic energy dissipation in relativistic plasma induced by high order laser modes

  • Y. J. Gu (a1), Q. Yu (a1) (a2), O. Klimo (a1) (a3), T. Zh. Esirkepov (a4), S. V. Bulanov (a4), S. Weber (a1) and G. Korn (a1)...

Abstract

Fast magnetic field annihilation in a collisionless plasma is induced by using TEM(1,0) laser pulse. The magnetic quadrupole structure formation, expansion and annihilation stages are demonstrated with 2.5-dimensional particle-in-cell simulations. The magnetic field energy is converted to the electric field and accelerate the particles inside the annihilation plane. A bunch of high energy electrons moving backwards is detected in the current sheet. The strong displacement current is the dominant contribution which induces the longitudinal inductive electric field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fast magnetic energy dissipation in relativistic plasma induced by high order laser modes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fast magnetic energy dissipation in relativistic plasma induced by high order laser modes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fast magnetic energy dissipation in relativistic plasma induced by high order laser modes
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: Y. J. Gu, ELI-Beamlines, Institute of Physics Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Prague, Czech Republic. Email: yanjun.gu@eli-beams.eu

References

Hide All
1. Taylor, J. B. Rev. Mod. Phys. 58, 741 (1986).
2. Yamada, M. Kulsrud, R. and Ji, H. Rev. Mod. Phys. 82, 603 (2010).
3. Strickland, D. and Mourou, G. Opt. Commun. 56, 219 (1985).
4. Yanovsky, V. Chvykov, V. Kalinchenko, G. Rousseau, P. Planchon, T. Matsuoka, T. Maksimchuk, A. Nees, J. Cheriaux, G. Mourou, G. and Krushelnick, K. Opt. Express 16, 2109 (2008).
5. Mourou, G. Korn, G. Sandner, W. and Collier, J. ELI Extreme Light Infrastructure (Whitebook) (THOSS Media GmbH, 2011).
6. Chériaux, G. Giambruno, F. Fréneaux, A. Leconte, F. Ramirez, L. P. Georges, P. Druon, F. Papadopoulos, D. N. Pellegrina, A. Le Blanc, C. Doyen, I. Legat, L. Boudenne, J. M. Mennerat, G. Audebert, P. Mourou, G. Mathieu, F. and Chambaret, J. P. AIP Conf. Proc. 1462, 78 (2012).
7. Nilson, P. M. Willingale, L. Kaluza, M. C. Kamperidis, C. Minardi, S. Wei, M. S. Fernandes, P. Notley, M. Bandyopadhyay, S. Sherlock, M. Kingham, R. J. Tatarakis, M. Najmudin, Z. Rozmus, W. Evans, R. G. Haines, M. G. Dangor, A. E. and Krushelnick, K. Phys. Rev. Lett. 97, 255001 (2006).
8. Li, C. K. Séguin, F. H. Frenje, J. A. Rygg, J. R. Petrasso, R. D. Town, R. P. J. Landen, O. L. Knauer, J. P. and Smalyuk, V. A. Phys. Rev. Lett. 99, 055001 (2007).
9. Ping, Y. L. Zhong, J. Y. Sheng, Z. M. Wang, X. G. Liu, B. Li, Y. T. Yan, X. Q. He, X. T. Zhang, J. and Zhao, G. Phys. Rev. E 89, 031101 (2014).
10. Drake, J. F. Kleva, R. G. and Mandt, M. E. Phys. Rev. Lett. 73, 1251 (1994).
11. Bulanov, S. V. Esirkepov, T. Z. Habs, D. Pegoraro, F. and Tajima, T. Eur. Phys. J. D 55, 483 (2009).
12. Bulanov, S. V. Esirkepov, T. Z. Kando, M. Koga, J. Kondo, K. and Korn, G. Plasma Phys. Rep. 41, 1 (2015).
13. Gu, Y. J. Klimo, O. Kumar, D. Bulanov, S. V. Esirkepov, T. Z. Weber, S. and Korn, G. Phys. Plasmas 22, 103113 (2015).
14. Gu, Y. J. Klimo, O. Kumar, D. Liu, Y. Singh, S. K. Esirkepov, T. Z. Bulanov, S. V. Weber, S. and Korn, G. Phys. Rev. E 93, 013203 (2016).
15. Yariv, A. and Yeh, P. Photonics: Optical Electronics in Modern Communications, 6th ed. Oxford Series in Electrical and Computer Engineering, (Oxford University Press, 2006).
16. Kong, Q. Miyazaki, S. Kawata, S. Miyauchi, K. Nakajima, K. Masuda, S. Miyanaga, N. and Ho, Y. K. Phys. Plasmas 10, 4605 (2003).
17. Kong, Q. Miyazaki, S. Kawata, S. Miyauchi, K. Sakai, K. Ho, Y. K. Nakajima, K. Miyanaga, N. Limpouch, J. and Andreev, A. A. Phys. Rev. E 69, 056502 (2004).
18. Ridgers, C. Kirk, J. Duclous, R. Blackburn, T. Brady, C. Bennett, K. Arber, T. and Bell, A. J. Comput. Phys. 260, 273 (2014).
19. Tajima, T. and Dawson, J. M. Phys. Rev. Lett. 43, 267 (1979).
20. Zakharov, V. E. and Kuznetsov, E. A. Physics-Uspekhi 40, 1087 (1997).
21. Zhong, J. Li, Y. Wang, X. Wang, J. Dong, Q. Xiao, C. Wang, S. Liu, X. Zhang, L. An, L. Wang, F. Zhu, J. Gu, Y. He, X. Zhao, G. and Zhang, J. Nat. Phys. 6, 984 (2010).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed