Skip to main content Accessibility help
×
Home

Enhancement of the surface emission at the fundamental frequency and the transmitted high-order harmonics by pre-structured targets

  • K. Q. Pan (a1), D. Yang (a1), L. Guo (a1), Z. C. Li (a1), S. W. Li (a1), C. Y. Zheng (a2) (a3), S. E. Jiang (a1), B. H. Zhang (a1) and X. T. He (a2) (a3)...

Abstract

Laser interaction with an ultra-thin pre-structured target is investigated with the help of both two-dimensional and three-dimensional particle-in-cell simulations. With the existence of a periodic structure on the target surface, the laser seems to penetrate through the target at its fundamental frequency even if the plasma density of the target is much higher than the laser’s relativistically critical density. The particle-in-cell simulations show that the transmitted laser energy behind the pre-structured target is increased by about two orders of magnitude compared to that behind the flat target. Theoretical analyses show that the transmitted energy behind the pre-structured target is actually re-emitted by electron ‘islands’ formed by the surface plasma waves on the target surfaces. In other words, the radiation with the fundamental frequency is actually ‘surface emission’ on the target rear surface. Besides the intensity of the component with the fundamental frequency, the intensity of the high-order harmonics behind the pre-structured target is also much enhanced compared to that behind the flat target. The enhancement of the high-order harmonics is also related to the surface plasma waves generated on the target surfaces.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Enhancement of the surface emission at the fundamental frequency and the transmitted high-order harmonics by pre-structured targets
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Enhancement of the surface emission at the fundamental frequency and the transmitted high-order harmonics by pre-structured targets
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Enhancement of the surface emission at the fundamental frequency and the transmitted high-order harmonics by pre-structured targets
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: S. E. Jiang, Laser Fusion Research Center, Mianyang 621900, China, Email: jiangshn@vip.sina.com; X. T. He, Center for Applied Physics and Technology, Peking University, Beijing 100871, China, Email: xthe@iapcm.ac.cn

References

Hide All
1. Brunel, F. Phys. Rev. Lett. 59, 52 (1987).
2. Cai, H. B. Yu, W. Zhu, S. P. and Zheng, C. Y. Phys. Plasmas 13, 113105 (2006).
3. Sentoku, Y. Cowan, T. E. Kemp, A. and Ruhl, H. Phys. Plasmas 10, 2009 (2003).
4. Wilks, S. C. Langdon, A. B. Cowan, T. E. Roth, M. Singh, M. Hatchett, S. Key, M. H. Pennington, D. MacKinnon, A. and Snavely, R. A. Phys. Plasmas 8, 542 (2001).
5. Pukhov, A. Phys. Rev. Lett. 86, 3562 (2001).
6. Pan, K. Q. Zheng, C. Y. Wu, D. and He, X. T. Phys. Plasmas 22, 083301 (2015).
7. Brady, C. S. Ridgers, C. P. Arber, T. D. Bell, A. R. and Kirk, J. G. Phys. Rev. Lett. 109, 245006 (2012).
8. Pan, K. Q. Zheng, C. Y. Wu, D. Cao, L. H. Liu, Z. J. and He, X. T. Appl. Phys. Lett. 107, 183902 (2015).
9. Zhang, W. and Yu, M. Y. Appl. Phys. Lett. 99, 141501 (2011).
10. Lichters, R. ter Vehn, J. M. and Pukhov, A. Phys. Plasmas 3, 3425 (1996).
11. an der Brügge, D. and Pukhov, A. arXiv:1111.4133v1 (2011).
12. Cerchez, M. Giesecke, A. L. Peth, C. Toncian, M. Albertazzi, B. Fuchs, J. Willi, O. and Toncian, T. Phys. Rev. Lett. 110, 065003 (2013).
13. Teubner, U. and Gibbon, P. Rev. Mod. Phys. 81, 445 (2009).
14. Ridgers, C. P. Brady, C. S. Duclous, R. Kirk, J. G. Bennett, K. Arber, T. D. Robinson, A. P. L. and Bell, A. R. Phys. Rev. Lett. 108, 165006 (2012).
15. Yan, X. Q. Lin, C. Sheng, Z. M. Guo, Z. Y. Liu, B. C. Lu, Y. R. Fang, J. X. and Chen, J. E. Phys. Rev. Lett. 100, 135003 (2008).
16. Henig, A. Steinke, S. Schnürer, M. Sokollik, T. Hörlein, R. Kiefer, D. Jung, D. Schreiber, J. Hegelich, B. M. Yan, X. Q. Meyer-ter-Vehn, J. Tajima, T. Nickles, P. V. Sandner, W. and Habs, D. Phys. Rev. Lett. 103, 245003 (2009).
17. Qiao, B. Zepf, M. Borghesi, M. Dromey, B. Geissler, M. Karmakar, A. and Gibbon, P. Phys. Rev. Lett. 105, 155002 (2010).
18. Steinke, S. Hilz, P. Schnürer, M. Priebe, G. Bränzel, J. Abicht, F. Kiefer, D. Kreuzer, C. Ostermayr, T. Schreiber, J. Andreev, A. A. Yu, T. P. Pukhov, A. and Sandner, W. Phys. Rev. ST Accel. Beams 16, 011303 (2013).
19. Yin, L. Albright, B. J. Bowers, K. J. Jung, D. Fernández, J. C. and Hegelich, B. M. Phys. Rev. Lett. 107, 045003 (2011).
20. Yin, L. Albright, B. J. Hegelich, B. M. Bowers, K. J. Flippo, K. A. Kwan, T. J. T. and Fernndez, J. C. Phys. Plasmas 14, 056706 (2007).
21. Henig, A. Kiefer, D. Markey, K. Gautier, D. C. Flippo, K. A. Letzring, S. Johnson, R. P. Shimada, T. Yin, L. Albright, B. J. Bowers, K. J. Fernendez, J. C. Rykovanov, S. G. Wu, H.-C. Zepf, M. Jung, D. Liechtenstein, V. Kh. Schreiber, J. Habs, D. and Hegelich, B. M. Phys. Rev. Lett. 103, 045002 (2009).
22. Jung, D. Yin, L. Albright, B. J. Gautier, D. C. Letzring, S. Dromey, B. Yeung, M. Hörlein, R. Shah, R. Palaniyappan, S. Allinger, K. Schreiber, J. Bowers, K. J. Wu, H.-C. Fernandez, J. C. Habs, D. and Hegelich, B. M. New J. Phys. 15, 023007 (2013).
23. an der Brügge, D. and Pukhov, A. Phys. Plasmas 17, 033110 (2010).
24. Dromey, B. Rykovanov, S. Yeung, R. D. M. Hörlein Gautier, D. C. Dzelzainis, T. Kiefer, D. Palaniyppan, S. Shah, R. Schreiber, J. Ruhl, H. Fernandez, J. C. Lewis, C. L. S. Zepf, M. and Hegelich, B. M. Nat. Phys. 8, 804 (2012).
25. Dromey, B. Cousens, S. Rykovanov, S. Yeung, M. Jung, D. Gautier, D. C. Dzelzainis, T. Kiefer, D. Palaniyppan, S. Shah, R. Schreiber, J. Fernandez, J. C. Lewis, C. L. S. Zepf, M. and Hegelich, B. M. New J. Phys. 15, 015025 (2013).
26. Ji, L. L. Pukhov, A. Nerush, E. N. Kostyukov, I. Yu. Shen, B. F. and Akli, K. U. Phys. Plasmas 21, 023109 (2014).
27. Wang, W. M. Sheng, Z. M. and Zhang, J. Phys. Plasmas 15, 030702 (2008).
28. Kahaly, S. Yadav, S. K. Wang, W. M. Sengupta, S. Sheng, Z. M. Das, A. Kaw, P. K. and Ravindra Kumar, G. Phys. Rev. Lett. 101, 145001 (2008).
29. Zhang, G. B. Chen, M. Liu, F. Yuan, X. H. Weng, S. M. Zheng, J. Ma, Y. Y. Shao, F. Q. Sheng, Z. M. and Zhang, J. Opt. Express 25, 23567 (2017).
30. Cantono, G. Fedeli, L. Sgattoni, A. Denoeud, A. Chopineau, L. Réau, F. Ceccotti, T. and Macchi, A. Phys. Rev. Lett. 120, 264803 (2018).
31. Pan, K. Q. Zheng, C. Y. Cao, L. H. Liu, Z. J. and He, X. T. Phys. Plasmas 23, 093101 (2016).
32. Bigongiari, A. Raynaud, M. Riconda, C. and Héron, A. Phys. Plasmas 20, 052701 (2013).
33. Eidmann, K. Kawachi, T. Marcinkevičius, A. Bartlome, R. Tsakiris, G. D. and Witte, K. Phys. Rev. E 72, 036413 (2005).
34. Bigongiari, A. Raynaud, M. Riconda, C. Héron, A. and Macchi, A. Phys. Plasmas 18, 102701 (2011).
35. Pan, K. Q. Zheng, C. Y. and He, X. T. Phys. Plasmas 23, 023109 (2016).
36. Bigongiari, A. Raynaud, M. and Riconda, C. Phys. Rev. E 84, 015402(R) (2011).
37. Lavocat-Dubuis, X. and Matte, J. P. Phys. Rev. E 80, 055401(R) (2009).
38. Bargsten, C. Hollinger, R. Capeluto, M. G. Kaymak, V. Pukhov, A. Wang, S. Rockwood, A. Wang, Y. Keiss, D. Tommasini, R. London, R. Park, J. Busquet, M. Klapisch, M. Shlyaptsev, V. N. and Rocca, J. J. Sci. Adv. 3, e1601558 (2017).
39. Z.-Y., Chen Cherednychek, M. and Pukhov, A. New J. Phys. 18, 063014 (2016).
40. Baeva, T. Gordienko, S. and Pukhov, A. Phys. Rev. E 74, 046404 (2006).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed