Skip to main content Accessibility help
×
Home

Effects of target pre-heating and expansion on terahertz radiation production from intense laser-solid interactions

  • X.H. Yuan (a1) (a2), Y. Fang (a1), D.C. Carroll (a3) (a4), D.A. MacLellan (a3), F. Du (a2), N. Booth (a4), M. Burza (a5), M. Chen (a1), R.J. Gray (a3), Y.F. Jin (a1), Y.T. Li (a2), Y. Liu (a1), D. Neely (a4), H. Powell (a3), G. Scott (a3) (a4), C.-G. Wahlström (a5), J. Zhang (a1) (a2), P. McKenna (a3) and Z.M. Sheng (a1) (a3)...

Abstract

The first experimental measurements of intense ( ${\sim }7\times 10^{19}~ {\rm W}~ {\rm cm}^{-2}$ ) laser-driven terahertz (THz) radiation from a solid target which is preheated by an intense pulse of laser-accelerated protons is reported. The total energy of the THz radiation is found to decrease by approximately a factor of 2 compared to a cold target reference. This is attributed to an increase in the scale length of the preformed plasma, driven by proton heating, at the front surface of the target, where the THz radiation is generated. The results show the importance of controlling the preplasma scale length for THz production.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of target pre-heating and expansion on terahertz radiation production from intense laser-solid interactions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of target pre-heating and expansion on terahertz radiation production from intense laser-solid interactions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of target pre-heating and expansion on terahertz radiation production from intense laser-solid interactions
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .

Corresponding author

Correspondence to: Email: paul.mckenna@strath.ac.uk; Y.T. Li, Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China. Email: ytli@iphy.ac.cn

References

Hide All
1. Hamster, H. Sullivan, A. Gordon, S. and Falcone, R. W. Phys. Rev. Lett. 71, 2725 (1993).
2. Sagisaka, A. Daido, H. Nashima, S. Orimo, S. Ogura, K. Mori, M. Yogo, A. Ma, J. Daito, I. Pirozhkov, A. S. Bulanov, S. V. Esirkepov, T. Zh. Shimizu, K. and Hosoda, M. Appl. Phys. B 90, 373 (2008).
3. Li, Y. T. Li, C. Zhou, M. L. Wang, W. M. Du, F. Ding, W. J. Lin, X. X. Liu, F. Sheng, Z. M. Peng, X. Y. Chen, L. M. Ma, J. L. Lu, X. Wang, Z. H. Wei, Z. Y. and Zhang, J. Appl. Phys. Lett. 100, 254101 (2012).
4. Gopal, A. May, T. Herzer, A. S. Reinhard, A. Minardi, S. Schubert, M. Dillner, U. Pradarutti, B. Polz, J. Gaumnitz, T. Kaluza, M. C. Jackel, O. Riehemann, S. Ziegler, W. Gemuend, H. P. Meyer, H. G. and Paulus, G. G. New J. Phys. 14, 083012 (2012).
5. Liu, M. K. Hwang, H. Y. Tao, H. Strikwerda, A. C. Fan, K. Keiser, G. R. Sternbach, A. J. West, K. G. Kittiwatanakul, S. Lu, J. Wolf, S. A. Omenetto, F. G. Zhang, X. Nelson, K. A. and Averitt, R. D. Nature (2012) doi:10.1038/nature11231.
6. Chen, M. Yuan, X. H. and Sheng, Z. M. Appl. Phys. Lett. 101, 161908 (2012).
7. Chen, M. Pukhov, A. Peng, X. Y. and Willi, O. Phys. Rev. E 78, 046406 (2008).
8. Ferguson, B. and Zhang, X. C. Nature Mat. 1, 26 (2002).
9. Chen, H. T. Padilla, W. J. Zide, J. M. O. Gossard, A. C. Taylor, A. J. and Averitt, R. D. Nature 444, 597 (2006).
10. Li, C. Zhou, M. L. Ding, W. J. Du, F. Liu, F. Li, Y.-T. Wang, W.-M. Sheng, Z.-M. Ma, J.-L. Chen, L.-M. Lu, X. Dong, Q.-L. Wang, Z.-H. Lou, Z. Shi, S.-C. Wei, Z.-Y. and Zhang, J. Phys. Rev. E 84, 036405 (2011).
11. Du, F. Li, C. Zhou, M. L. Wang, W. M. Su, L. N. Zheng, Y. Ge, X. L. Li, Y. T. Ma, J. L. Liu, X. L. Zhang, L. Sheng, Z. M. Chen, L. M. Lu, X. Dong, Q. L. Wang, Z. H. Wei, Z. Y. and Zhang, J. Sci. China Inf. Sci. 55, 43 (2012).
12. Du, F. Li, C. Zhou, M. L. Wang, W. M. Su, L. N. Zheng, Y. Li, Y. T. Ma, J. L. Sheng, Z. M. Chen, L. M. Lu, X. Wang, Z. H. Wei, Z. Y. and Zhang, J. Sci. China-Phys. Mech. Astron. 55, 589 (2012).
13. Gao, Y. Drake, T. Chen, Z. Y. and DeCamp, M. F. Opt. Lett. 33, 2776 (2008).
14. McKenna, P. Carroll, D. C. Clarke, R. J. Evans, R. G. Ledingham, K. W. D. Lindau, F. Lundh, O. McCanny, T. Neely, D. Robinson, A. P. L. Robson, L. Simpson, P. T. Wahlstrom, C.-G. and Zepf, M. Phys. Rev. Lett. 111, 074802 (2007).
15. Gray, R. J. Yuan, X. H. Carroll, D. C. Brenner, C. M. Coury, M. Quinn, M. N. Tresca, O. Zielbauer, B. Aurand, B. Bagnoud, V. Fils, J. Kuhl, T. Lin, X. X. Li, C. Li, Y. T. Roth, M. Neely, D. and McKenna, P. Appl. Phys. Lett. 99, 171502 (2011).
16. Wilks, S. C. Langdon, A. B. Cowan, T. E. Roth, M. Singh, M. Hatchett, S. Key, M. H. Pennington, D. MacKinnon, A. and Snavely, R. A. Phys. Plasmas 8, 542 (2001).
17. MacFarlane, J. J. Golovkin, I. E. and Woodruff, P. R. J. Quant. Spectrosc. Radiat. 99, 381 (2006).
18. Mancic, A. Robiche, J. Antici, P. Audebert, P. Blancard, C. Combis, P. Dorchies, F. Faussurier, G. Fourmaux, S. Harmand, M. Kodama, R. Lancia, L. Mazevet, S. Nakatsutsumi, M. Peyrusse, O. Recoules, V. Renaudin, P. Shepherd, R. and Fuchs, J. High Energy Density Physics 6, 21 (2010).
19. Sheng, Z. M. Wu, H. C. Li, K. and Zhang, J. Phys. Rev. E 69, 025401(R) (2004).
20. Sheng, Z. M. Mima, K. Zhang, J. and Sanuki, H. Phys. Rev. Lett. 94, 095003 (2005).
21. Gorbunov, L. M. and Frolov, A. A. J. Exp. and Theoret. Phys. 102, 894 (2006).
22. Gopal, A. Herzer, S. Schmidt, A. Singh, P. Reinhard, A. Ziegler, W. Brommel, D. Karmakar, A. Gibbon, P. Dillner, U. May, T. Meyer, H.-G. and Paulus, G. G. Phys. Rev. Lett. 111, 074802 (2013).
23. Zheng, J. Tanaka, K. A. Miyakoshi, T. Kitagawa, Y. Kodama, R. Kurahashi, T. and Yamanaka, T. Phys. Plasmas 10, 2994 (2003).
24. Schroeder, C. B. Esarey, E. van Tilborg, J. and Leemans, W. P. Phys. Rev. E 69, 016501 (2004).
25. Ding, W. J. Sheng, Z. M. and Koh, W. S. Appl. Phys. Lett. 103, 204107 (2013).
26. McKenna, P. Carroll, D. C. Lundh, O. Nurnberg, F. Markey, K. Bandyopadhyay, S. Batani, D. Evans, R. G. Jafer, R. Kar, S. Neely, D. Pepler, D. Quinn, M. N. Redaelli, R. Roth, M. Wahlstrom, C.-G. Yuan, X. H. and Zepf, M. Laser Part. Beams 26, 591 (2008).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed