Skip to main content Accessibility help
×
Home

Directly writing binary multi-sector phase plates on fused silica using femtosecond laser

  • Li Zhou (a1), Youen Jiang (a1), Peng Zhang (a1), Wei Fan (a1) and Xuechun Li (a1)...

Abstract

Light carrying orbital angular momentum (OAM) has a spatial distribution of intensity and phase, which attracts considerable interest regarding several potential applications in optical and quantum scenarios recently. Spiral phase plates are commonly used elements for generating and analyzing OAM states. In this study, we put forward a method of directly writing binary multi-sector phase plates using the femtosecond laser. These phase plates are engraved on fused silica, which could be applied in high-intensity regimes. Different binary multi-sector phase plates were generated with high quality, which were proved by the observation of their structures, accompanied by detecting the beam patterns with the Gaussian beams. The proposed method provides a crucial basis for the rapid manufacturing of phase plates using convenient equipment, which can generate the superposition OAM states and may lead to the capability of measuring the high-dimensional entanglement.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Directly writing binary multi-sector phase plates on fused silica using femtosecond laser
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Directly writing binary multi-sector phase plates on fused silica using femtosecond laser
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Directly writing binary multi-sector phase plates on fused silica using femtosecond laser
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: L. Zhou, 390 Qinghe Road, Jiading, Shanghai 201800, China. Email: zhoul@siom.ac.cn

References

Hide All
1. Allen, L. Beijersbergen, M. W. Spreeuw, R. J. and Woerdman, J. P. Phys. Rev. A 45, 8185 (1992).
2. Simpson, N. B. Allen, L. and Padgett, M. J. J. Modern Opt. 43, 2485 (1996).
3. Friese, M. E. J. Rubinsztein-Dunlop, H. Gold, J. Hagberg, P. and Hanstorp, D. Appl. Phys. Lett. 78, 547 (2001).
4. Ladavac, K. and Grier, D. G. Opt. Express 12, 1144 (2004).
5. Luo, D. Kuang, C. F. Hao, X. and Liu, X. Opt. Lasers Eng. 50, 944 (2012).
6. Rosales-Guzman, C. Hermosa, N. Belmonte, A. and Torres, J. P. Opt. Lett. 39, 5415 (2014).
7. Lavery, M. P. J. Speirits, F. C. Barnett, S. M. and Padgett, M. J. Science 34, 537 (2013).
8. Rosales-Guzman, C. Hermosa, N. Belmonte, A. and Torres, J. P. Sci. Rep. 3, 2815 (2013).
9. Lavery, M. P. J. Barnett, S. M. Speirits, F. C. and Padgett, M. J. Optica 1, 1 (2014).
10. Phillips, D. B. Lee, M. P. Speirits, F. C. Barnett, S. M. Simpson, S. H. Lavery, M. P. J. Padgett, M. J. and Gibson, G. M. Phys. Rev. A 90 (2014).
11. Martin, H. Astrophys. J. 597, 1266 (2003).
12. Milione, G. Wang, T. Han, J. and Bai, L. Chin. Opt. Lett. 15, 030012 (2017).
13. Wang, J. Yang, J.-Y. Fazal, I. M. Ahmed, N. Yan, Y. Huang, H. Ren, Y. Yue, Y. Dolinar, S. Tur, M. and Willner, A. E. Nat. Photon. 6, 488 (2012).
14. Mohammad, M. Omar, S. M.-L. Malcolm, N. O. S. Brandon, R. Mehul, M. Martin, P. J. L. Miles, J. P. Daniel, J. G. and Robert, W. B. New J. Phys. 17, 033033 (2015).
15. Fickler, R. Lapkiewicz, R. Plick, W. N. Krenn, M. Schaeff, C. Ramelow, S. and Zeilinger, A. Science 338, 640 (2012).
16. Mair, A. Vaziri, A. Weihs, G. and Zeilinger, A. Nature 412, 313 (2001).
17. Barreiro, J. T. Wei, T.-C. and Kwiat, P. G. Nat. Phys. 4, 282 (2008).
18. Lütkenhaus, N. Phys. Rev. A 54, 97 (1996).
19. Zhang, L. Silberhorn, C. and Walmsley, I. A. Phys. Rev. Lett. 100, 110504 (2008).
20. Lanyon, B. P. Barbieri, M. Almeida, M. P. Jennewein, T. Ralph, T. C. Resch, K. J. Pryde, G. J. O’Brien, J. L. Gilchrist, A. and White, A. G. Nat. Phys. 5, 134 (2009).
21. Forbes, A. Dudley, A. and McLaren, M. Adv. Opt. Photonics 8, 200 (2016).
22. Yao, E. Franke-Arnold, S. Courtial, J. Padgett, M. J. and Barnett, S. M. Opt. Express 14, 13089 (2006).
23. Zhou, S. Wang, S. Chen, J. Rui, G. and Zhan, Q. Photon. Res. 4, B35 (2016).
24. Chen, Y. Fang, Z. X. Ren, Y. X. Gong, L. and Lu, R. D. Appl. Opt. 54, 8030 (2015).
25. Gong, L. Ren, Y. Liu, W. Wang, M. Zhong, M. Wang, Z. and Li, Y. J. Appl. Phys. 116, 183105 (2014).
26. Goorden, S. A. Bertolotti, J. and Mosk, A. P. Opt. Express 22, 17999 (2014).
27. Mitchell, K. J. Turtaev, S. Padgett, M. J. Cizmar, T. and Phillips, D. B. Opt. Express 24, 29269 (2016).
28. Zhang, C. Min, C. and Yuan, X. C. Opt. Commun. 381, 292 (2016).
29. Mirhosseini, M. na Loaiza, O. S. M. Chen, C. Rodenburg, B. Malik, M. and Boyd, R. W. Opt. Express 21, 30204 (2013).
30. Campbell, G. Hage, B. Buchler, B. and Lam, P. K. Appl. Opt. 51, 873 (2012).
31. Liu, Z. Liu, Y. Ke, Y. Liu, Y. Shu, W. Luo, H. and Wen, S. Photon. Res. 5, 15 (2017).
32. Pors, B. J. Miatto, F. Hooft, G. W. Eliel, E. R. and Woerdman, J. P. J. Opt. 13, 064008 (2011).
33. Pors, J. B. Oemrawsingh, S. S. Aiello, A. van Exter, M. P. Eliel, E. R. Hooft, G. W. ’t and Woerdman, J. P. Phys. Rev. Lett. 101, 120502 (2008).
34. Oemrawsingh, S. S. van Houwelingen, J. A. Eliel, E. R. Woerdman, J. P. Verstegen, E. J. Kloosterboer, J. G. and Hooft, G. W. ’t Appl. Opt. 43, 688 (2004).
35. Ruffato, G. Massari, M. Carli, M. and Romanato, F. Opt. Eng. 54 (2015).
36. Sueda, K. Miyaji, G. Miyanaga, N. and Nakatsuka, M. Opt. Express 12, 3548 (2004).
37. Knoner, G. Parkin, S. Nieminen, T. A. Loke, V. L. Heckenberg, N. R. and Rubinsztein-Dunlop, H. Opt. Express 15, 5521 (2007).
38. Brasselet, E. Malinauskas, M. Zukauskas, A. and Juodkazis, S. Appl. Phys. Lett. 97 (2010).
39. Wang, X. Kuchmizhak, A. A. Brasselet, E. and Juodkazis, S. Appl. Phys. Lett. 110, 181101 (2017).
40. Žukauskas, A. Malinauskas, M. and Brasselet, E. Appl. Phys. Lett. 103, 181122 (2013).
41. Negres, R. A. Norton, M. A. Cross, D. A. and Carr, C. W. Opt. Express 18, 19966 (2010).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed