Skip to main content Accessibility help
×
Home

Design and experimental demonstration of a high conversion efficiency OPCPA pre-amplifier for petawatt laser facility

  • Xiao Liang (a1) (a2), Xinglong Xie (a1), Jun Kang (a1), Qingwei Yang (a1), Hui Wei (a1), Meizhi Sun (a1) and Jianqiang Zhu (a1)...

Abstract

We present the design and experiment of a broadband optical parametric chirped-pulse amplifier (OPCPA) which provides high conversion efficiency and good beam quality at 808 nm wavelength. Using a three-dimensional spatial and temporal numerical model, several design considerations necessary to achieve high conversion efficiency, good beam quality and good output stability are discussed. To improve the conversion efficiency and broaden the amplified signal bandwidth simultaneously, the nonlinear crystal length and OPCPA parameters are analyzed and optimized with the concept of dissipating amplified idler between optical parametric amplification (OPA) of two crystals configuration. In the experiment, an amplifier consisting of two OPCPA stages of ‘L’ type configuration was demonstrated by using the optimized parameters. An amplified signal energy of 160 mJ was achieved with a total pump-to-signal efficiency of 35% (43% efficiency for the OPCPA stage 2). The output bandwidth of signal pulse reached 80 nm and the signal pulse was compressed to 24 fs. The energy stability reached 1.67% RMS at 3% pump energy variation. The optimized OPCPA amplifier operates at a repetition rate of 1 Hz and is used as a front-end injection for the main amplifier of SG-II 5PW laser facility.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Design and experimental demonstration of a high conversion efficiency OPCPA pre-amplifier for petawatt laser facility
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Design and experimental demonstration of a high conversion efficiency OPCPA pre-amplifier for petawatt laser facility
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Design and experimental demonstration of a high conversion efficiency OPCPA pre-amplifier for petawatt laser facility
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: J. Zhu and M. Sun, No. 390 Qinghe Road, Jiading District, Shanghai 201800, China. Email: jqzhu@siom.ac.cn (J. Zhu);eric913@siom.ac.cn (M. Sun).

References

Hide All
1. Danson, C. Hillier, D. Hopps, N. and Neely, D. High Power Laser Sci. Eng. 3, e3 (2015).
2. Rothhardt, J. Hädrich, S. Delagnes, J. C. Cormier, E. and Limpert, J. Laser Photon. Rev. 11, 1700043 (2017).
3. Ross, I. N. Matousek, P. Towrie, M. Langley, A. J. and Collier, J. L. Opt. Commun. 144, 125 (1997).
4. Riedel, R. Rothhardt, J. Beil, K. Gronloh, B. Klenke, A. Hoppner, H. Schulz, M. Teubner, U. Krankel, C. Limpert, J. Tunnermann, A. J. Prandolini, M. and X. Kärtner, F. Opt. Express 22, 17607 (2014).
5. Fülöp, J. A. Major, Z. Henig, A. Kruber, S. Weingartner, R. Clausnitzer, T. Kley, E. B. Tünnermann, A. Pervak, V. Apolonski, A. Osterhoff, J. Hörlein, R. Krausz, F. and Karsch, S. New J. Phys. 9, 438 (2007).
6. Batysta, F. Antipenkov, R. Novák, J. Green, J. T. Naylon, J. A. Horáček, J. Horáček, M. Hubka, Z. Boge, R. Mazanec, T. Himmel, B. Bakule, P. and Rus, B. Opt. Express 24, 17843 (2016).
7. Skrobol, C. Ahmad, I. Klingebiel, S. Wandt, C. Trushin, S. A. Major, Z. Krausz, F. and Karsch, S. Opt. Express 20, 4619 (2012).
8. Novák, O. Turčičová, H. Divoký, M. Smrž, M. Huynh, J. and Straka, P. Opt. Lett. 37, 2100 (2012).
9. Su, H. Peng, Y. Chen, J. Li, Y. Wang, P. and Leng, Y. Appl. Sci. 7, 997 (2017).
10. Novák, J. Bakule, P. Green, J. T. Hubka, Z. and Rus, B. in Proceedings of IEEE Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015), p. 10.
11. Budriūnas, R. Stanislauskas, T. Adamonis, J. Aleknavičius, A. Veitas, G. Gadonas, D. Balickas, S. Michailovas, A. and Varanavičius, A. Opt. Express 25, 5797 (2017).
12. Zeng, X. Zhou, K. Zuo, Y. Zhu, Q. Su, J. Wang, X. Wang, X. Huang, X. Jiang, X. Jiang, D. Guo, Y. Xie, N. Zhou, S. Wu, Z. Mu, J. Peng, H. and Jing, F. Opt. Lett. 42, 2014 (2017).
13. Lozhkarev, V. V. Freidman, G. I. Ginzburg, V. N. Katin, E. V. Khazanov, E. A. Kirsanov, A. V. Luchinin, G. A. Mal’shakov, A. N. Martyanov, M. A. Palashov, O. V. Poteomkin, A. K. Sergeev, A. M. Shaykin, A. A. and Yakovlev, I. V. Laser Phys. Lett. 4, 421 (2007).
14. Liao, Z. M. Jovanovic, I. Ebbers, C. Fei, Y. A. and Chai, B. Opt. Lett. 31, 1277 (2006).
15. Moses, J. Manzoni, C. Huang, S. W. Cerullo, G. and Kartner, F. X. Opt. Express 17, 5540 (2009).
16. Bagnoud, V. Begishev, I. A. Guardalben, M. J. Puth, J. and Zuegel, J. D. Opt. Lett. 30, 1843 (2005).
17. Ma, J. Wang, J. Yuan, P. Xie, G. Xiong, K. Tu, Y. Tu, X. Shi, E. Zheng, Y. and Qian, L. Optica 2, 1006 (2015).
18. Cao, H. B. Tóth, S. Yamanaka, M. Kalashnikov, M. Chvykov, V. and Osvay, K. Opt. Express 26, 7516 (2018).
19. Zhu, J. Q. Xie, X. L. Sun, M. Z. Kang, J. Yang, Q. W. Guo, A. L. Zhu, H. D. Zhu, P. Gao, Q. Liang, X. Cui, Z. R. Yang, S. H. Zhang, C. and Lin, Z. Q. High Power Laser Sci. Eng. 6, e29 (2018).
20. Andrianov, A. Szabo, A. Sergeev, A. Kim, A. Chvykov, V. and Kalashnikov, M. Opt. Express 24, 25974 (2016).
21. Yang, Q. W. Cui, Z. R. Kang, J. Guo, A. L. Zhu, H. D. Sun, M. Z. Zhu, P. Gao, Q. Xie, X. L. and Zhu, J. Q. Opt. Eng. 57, 064103 (2018).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed