Skip to main content Accessibility help
×
Home

Deep-learning-based phase control method for tiled aperture coherent beam combining systems

  • Tianyue Hou (a1), Yi An (a1), Qi Chang (a1), Pengfei Ma (a1), Jun Li (a1), Dong Zhi (a2), Liangjin Huang (a1), Rongtao Su (a1), Jian Wu (a1), Yanxing Ma (a1) and Pu Zhou (a1)...

Abstract

We incorporate deep learning (DL) into tiled aperture coherent beam combining (CBC) systems for the first time, to the best of our knowledge. By using a well-trained convolutional neural network DL model, which has been constructed at a non-focal-plane to avoid the data collision problem, the relative phase of each beamlet could be accurately estimated, and then the phase error in the CBC system could be compensated directly by a servo phase control system. The feasibility and extensibility of the phase control method have been demonstrated by simulating the coherent combining of different hexagonal arrays. This DL-based phase control method offers a new way of eliminating dynamic phase noise in tiled aperture CBC systems, and it could provide a valuable reference on alleviating the long-standing problem that the phase control bandwidth decreases as the number of array elements increases.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Deep-learning-based phase control method for tiled aperture coherent beam combining systems
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Deep-learning-based phase control method for tiled aperture coherent beam combining systems
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Deep-learning-based phase control method for tiled aperture coherent beam combining systems
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to:  P. Ma and P. Zhou, No. 109 Deya Road, Kaifu District, Changsha 410073, China. Email: shandapengfei@126.com (P. Ma); zhoupu203@163.com (P. Zhou)

References

Hide All
1. Fan, T. Y. IEEE J. Sel. Top. Quant. Elect. 11, 567 (2005).
2. Leger, J. R. in Conference on Lasers and Electro-Optics 2010 (Optical Society of America, 2010), paper CThG1.
3. Goodno, G. D. Asman, C. P. Anderegg, J. Brosnan, S. Cheung, E. C. Hammons, D. Injeyan, H. Komine, H. Long, W. H. McClellan, M. McNaught, S. J. Redmond, S. Simpson, R. Sollee, J. Weber, M. Weiss, S. B. and Wickham, M. IEEE J. Sel. Top. Quant. Elect. 13, 460 (2007).
4. Zhou, P. Liu, Z. Wang, X. Ma, Y. Ma, H. and Xu, X. IEEE J. Sel. Top. Quant. Elect. 15, 248 (2009).
5. Yu, C. X. Augst, S. J. Redmond, S. M. Goldizen, K. C. Murphy, D. V. Sanchez, A. and Fan, T. Y. Opt. Lett. 36, 2686 (2011).
6. Seise, E. Klenke, A. Limpert, J. and Tünnermann, A. Opt. Express 18, 27827 (2010).
7. Flores, A. Dajani, I. Holten, R. Ehrenreich, T. and Anderson, B. Opt. Eng. 55, 096101 (2016).
8. Liu, Z. Ma, P. Su, R. Tao, R. Ma, Y. Wang, X. and Zhou, P. J. Opt. Soc. Am. B 34, A7 (2017).
9. Bourderionnet, J. Bellanger, C. Primot, J. and Brignon, A. Opt. Express 19, 17053 (2011).
10. Kabeya, D. Kermène, V. Fabert, M. Benoist, J. Saucourt, J. Desfarges-Berthelemot, A. and Barthélémy, A. Opt. Express 25, 13816 (2017).
11. Zhi, D. Hou, T. Ma, P. Ma, Y. Zhou, P. Tao, R. Wang, X. and Si, L. High Power Laser Sci. Eng. 7, e33 (2019).
12. Anderegg, J. Brosnan, S. Cheung, E. Epp, P. Hammons, D. Komine, H. Weber, M. and Wickham, M. Proc. SPIE 6102, 61020U (2006).
13. Shay, T. M. Opt. Express 14, 12188 (2006).
14. Azarian, A. Bourdon, P. Lombard, L. Jaouën, Y. and Vasseur, O. Appl. Opt. 53, 1493 (2014).
15. Ma, Y. Wang, X. Leng, J. Xiao, H. Dong, X. Zhu, J. Du, W. Zhou, P. Xu, X. Si, L. Liu, Z. and Zhao, Y. Opt. Lett. 36, 951 (2011).
16. Tang, X. Huang, Z. Zhang, D. Wang, X. Li, J. and Liu, C. Opt. Commun. 321, 198 (2014).
17. Jiang, M. Su, R. Zhang, Z. Ma, Y. Wang, X. and Zhou, P. Appl. Opt. 56, 4255 (2017).
18. Antier, M. Bourderionnet, J. Larat, C. Lallier, E. Lenormand, E. Primot, J. and Brignon, A. IEEE J. Sel. Top. Quant. Elect. 20, 0901506 (2014).
19. Kabeya, D. Kermene, V. Fabert, M. Benoist, J. Desfarges-Berthelemot, A. and Barthelemy, A. Opt. Express 23, 31059 (2015).
20. Vorontsov, M. A. and Sivokon, V. P. J. Opt. Soc. Am. A 15, 2745 (1998).
21. Ahn, H. and Kong, H. Opt. Express 23, 12407 (2015).
22. Fu, X. Brunton, S. L. and Kutz, J. N. Opt. Express 22, 8585 (2014).
23. Baumeister, T. Brunton, S. L. and Kutz, J. N. J. Opt. Soc. Am. B 35, 617 (2018).
24. Rivenson, Y. Göröcs, Z. Günaydin, H. Zhang, Y. Wang, H. and Ozcan, A. Optica 4, 1437 (2017).
25. An, Y. Huang, L. Li, J. Leng, J. Yang, L. and Zhou, P. Opt. Express 27, 10127 (2019).
26. Tünnermann, H. and Shirakawa, A. Opt. Express 27, 24223 (2019).
27. Hou, T. Zhang, Y. Chang, Q. Ma, P. Su, R. Wu, J. Ma, Y. and Zhou, P. Opt. Express 27, 4046 (2019).
28. Simonyan, K. and Zisserman, A. in International Conference on Learning Representations (ICLR) (2015).
29. Vorontsov, M. A. and Lachinova, S. L. J. Opt. Soc. Am. A 25, 1949 (2008).
30. Lachinova, S. L. and Vorontsov, M. A. J. Opt. Soc. Am. A 25, 1960 (2008).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Deep-learning-based phase control method for tiled aperture coherent beam combining systems

  • Tianyue Hou (a1), Yi An (a1), Qi Chang (a1), Pengfei Ma (a1), Jun Li (a1), Dong Zhi (a2), Liangjin Huang (a1), Rongtao Su (a1), Jian Wu (a1), Yanxing Ma (a1) and Pu Zhou (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed