Skip to main content Accessibility help
×
Home

Collective absorption of laser radiation in plasma at sub-relativistic intensities

  • Y. J. Gu (a1) (a2), O. Klimo (a1) (a3), Ph. Nicolaï (a4), S. Shekhanov (a1), S. Weber (a1) (a5) and V. T. Tikhonchuk (a1) (a4)...

Abstract

Processes of laser energy absorption and electron heating in an expanding plasma in the range of irradiances $I\unicode[STIX]{x1D706}^{2}=10^{15}{-}10^{16}~\text{W}\,\cdot \,\unicode[STIX]{x03BC}\text{m}^{2}/\text{cm}^{2}$ are studied with the aid of kinetic simulations. The results show a strong reflection due to stimulated Brillouin scattering and a significant collisionless absorption related to stimulated Raman scattering near and below the quarter critical density. Also presented are parametric decay instability and resonant excitation of plasma waves near the critical density. All these processes result in the excitation of high-amplitude electron plasma waves and electron acceleration. The spectrum of scattered radiation is significantly modified by secondary parametric processes, which provide information on the spatial localization of nonlinear absorption and hot electron characteristics. The considered domain of laser and plasma parameters is relevant for the shock ignition scheme of inertial confinement fusion.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Collective absorption of laser radiation in plasma at sub-relativistic intensities
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Collective absorption of laser radiation in plasma at sub-relativistic intensities
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Collective absorption of laser radiation in plasma at sub-relativistic intensities
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: Y. J. Gu, ELI-Beamlines, Institute of Physics, Czech Academy of Sciences, 25241 Dolní Břežany, Czech Republic. Email: yanjun.gu@eli-beams.eu

References

Hide All
1. Garban-Labaune, C. Fabre, E. Max, C. E. Fabbro, R. Amiranoff, F. Virmont, J. Weinfeld, M. and Michard, A. Phys. Rev. Lett. 48, 1018 (1982).
2. Nilson, P. Solodov, A. A. Myatt, J. F. Theobald, W. Jaanimagi, P. A. Gao, L. Stoeckl, C. Craxton, R. S. Delettrez, J. A. Yaakobi, B. Zuegel, J. D. Kruschwitz, B. E. Dorrer, C. Kelly, J. H. Akli, K. U. Patel, P. K. Mackinnon, A. J. Betti, R. Sangster, T. C. and Meyerhofer, D. D. Phys. Rev. Lett. 105, 235001 (2010).
3. Klimo, O. Tikhonchuk, V. T. Ribeyre, X. Schurtz, G. Riconda, C. Weber, S. and Limpouch, J. Phys. Plasmas 18, 082709 (2011).
4. Hinkel, D. Haan, S. W. Langdon, A. B. Dittrich, T. R. Still, C. H. and Marinak, M. M. Phys. Plasmas 11, 1128 (2004).
5. Xiao, C. Z. Liu, Z. J. Zheng, C. Y. and He, X. T. Phys. Plasmas 23, 022704 (2016).
6. Estabrook, K. Valeo, E. J. and Kruer, W. L. Phys. Fluids 18, 1151 (1975).
7. Batani, D. Baton, S. Casner, A. Depierreux, S. Hohenberger, M. Klimo, O. Koenig, M. Labaune, C. Ribeyre, X. Rousseaux, C. Schurtz, G. Theobald, W. and Tikhonchuk, V. T. Nucl. Fusion 54, 054009 (2014).
8. Batani, D. Antonelli, L. Barbato, F. Boutoux, G. Colaïtis, A. Feugeas, J.-L. Folpini, G. Mancelli, D. Nicolaï, Ph. Santos, J. Trela, J. Tikhonchuk, V. Badziak, J. Chodukowski, T. Jakubowska, K. Kalinowska, Z. Pisarczyk, T. Rosinski, M. Sawicka, M. Baffigi, F. Cristoforetti, G. D’Amato, F. Koester, P. Gizzi, L. A. Viciani, S. Atzeni, S. Sciavi, A. Skoric, M. Gu’skov, S. Honrubia, J. Limpouch, J. Klimo, O. Skala, J. Gu, Y. J. Krousky, E. Renner, O. Smid, M. Weber, S. Dudzak, R. Krus, M. and Ullschmied, J. Nucl. Fusion 59, 032012 (2019).
9. Jungwirth, K. Cejnarova, A. Juha, L. Kralikova, B. Krasa, J. Krousky, E. Krupickova, P. Laska, L. Masek, K. Mocek, T. Pfeifer, M. Präg, A. Renner, O. Rohlena, K. Rus, B. Skala, J. Straka, P. and Ullschmied, J. Phys. Plasmas 8, 2495 (2001).
10. Breil, J. Galera, S. and Maire, P.-H. J. Comput. Fluids 46, 161 (2011).
11. Colaïtis, A. Duchateau, G. Nicolaï, P. and Tikhonchuk, V. Phys. Rev. E 89, 033101 (2014).
12. Colaïtis, A. Duchateau, G. Ribeyre, X. Maheut, Y. Boutoux, G. Antonelli, L. Nicolaï, Ph. Batani, D. and Tikhonchuk, V. Phys. Rev. E 92, 041101 (2015).
13. Arber, T. D. Bennett, K. Brady, C. S. Lawrence-Douglas, A. Ramsay, M. G. Sircombe, N. J. Gillies, P. Evans, R. G. Schmitz, H. Bell, A. R. and Ridgers, C. P. Plasma Phys. Control. Fusion 57, 113001 (2015).
14. Kruer, W. L. The Physics of Laser Plasma Interactions (Westview Press, University of California, Los Angeles, 2003).
15. Cui, Y. Q. Wang, W. M. Sheng, Z. M. and Li, Y. T. Plasma Phys. Control. Fusion 55, 085008 (2013).
16. Langdon, A. B. and Lasinski, B. F. Phys. Fluids 28, 582 (1983).
17. Weber, S. Riconda, C. Klimo, O. Heron, A. and Tikhonchuk, V. Phys. Rev. E 85, 016403 (2012).
18. Riconda, C. and Weber, S. High Power Laser Sci. Eng. 4, e23 (2016).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Collective absorption of laser radiation in plasma at sub-relativistic intensities

  • Y. J. Gu (a1) (a2), O. Klimo (a1) (a3), Ph. Nicolaï (a4), S. Shekhanov (a1), S. Weber (a1) (a5) and V. T. Tikhonchuk (a1) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed