Skip to main content Accessibility help
×
Home

Burst behavior due to the quasimode excited by stimulated Brillouin scattering in high-intensity laser–plasma interactions

  • Q. S. Feng (a1), L. H. Cao (a1) (a2) (a3), Z. J. Liu (a1) (a2), C. Y. Zheng (a1) (a2) (a3) and X. T. He (a1) (a2) (a3)...

Abstract

The strong-coupling mode, called the “quasimode”, is excited by stimulated Brillouin scattering (SBS) in high-intensity laser–plasma interactions. Also SBS of the quasimode competes with SBS of the fast mode (or slow mode) in multi-ion species plasmas, thus leading to a low-frequency burst behavior of SBS reflectivity. Competition between the quasimode and the ion-acoustic wave (IAW) is an important saturation mechanism of SBS in high-intensity laser–plasma interactions. These results give a clear explanation of the low-frequency periodic burst behavior of SBS and should be considered as a saturation mechanism of SBS in high-intensity laser–plasma interactions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Burst behavior due to the quasimode excited by stimulated Brillouin scattering in high-intensity laser–plasma interactions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Burst behavior due to the quasimode excited by stimulated Brillouin scattering in high-intensity laser–plasma interactions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Burst behavior due to the quasimode excited by stimulated Brillouin scattering in high-intensity laser–plasma interactions
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: L. H. Cao and C. Y. Zheng, No. 2, Fenghao East Road, Haidian District, Beijing 100094, China. Email: cao_lihua@iapcm.ac.cn (L. H. Cao), zheng_chunyang@iapcm.ac.cn (C. Y. Zheng)

References

Hide All
1. He, X. T. Li, J. W. Fan, Z. F. Wang, L. F. Liu, J. Lan, K. Wu, J. F. and Ye, W. H. Phys. Plasmas 23, 082706 (2016).
2. Glenzer, S. H. MacGowan, B. J. Michel, P. Meezan, N. B. Suter, L. J. Dixit, S. N. Kline, J. L. Kyrala, G. A. Bradley, D. K. Callahan, D. A. Dewald, E. L. Divol, L. Dzenitis, E. Edwards, M. J. Hamza, A. V. Haynam, C. A. Hinkel, D. E. Kalantar, D. H. Kilkenny, J. D. Landen, O. L. Lindl, J. D. LePape, S. Moody, J. D. Nikroo, A. Parham, T. Schneider, M. B. Town, R. P. J. Wegner, P. Widmann, K. Whitman, P. Young, B. K. F. Van Wonterghem, B. Atherton, J. and Moses, E. I. Science 327, 228 (2010).
3. Glenzer, S. H. Froula, D. H. Divol, L. Dorr, M. Berger, R. L. Dixit, S. Hammel, B. A. Haynam, C. Hittinger, J. A. Holder, J. P. Jones, O. S. Kalantar, D. H. Landen, O. L. Langdon, A. B. Langer, S. MacGowan, B. J. Mackinnon, A. J. Meezan, N. Moses, E. I. Niemann, C. Still, C. H. Suter, L. J. Wallace, R. J. Williams, E. A. and Young, B. K. F. Nat. Phys. 3, 716 (2007).
4. Neumayer, P. Berger, R. L. Divol, L. Froula, D. H. London, R. A. MacGowan, B. J. Meezan, N. B. Ross, J. S. Sorce, C. Suter, L. J. and Glenzer, S. H. Phys. Rev. Lett. 100, 105001 (2008).
5. Liu, C. S. Rosenbluth, M. N. and White, R. B. Phys. Fluids 17, 1211 (1974).
6. Guzdar, P. N. Liu, C. S. and Lehmberg, R. H. Phys. Plasmas 3, 3414 (1996).
7. Malkin, V. Shvets, G. and Fisch, N. J. Phys. Rev. Lett. 82, 4448 (1999).
8. Andreev, A. A. Riconda, C. Tikhonchuk, V. T. and Weber, S. Phys. Plasmas 13, 053110 (2006).
9. Weber, S. Riconda, C. Lancia, L. Marques, J. R. Mourou, G. A. and Fuchs, J. Phys. Rev. Lett. 111, 055004 (2013).
10. Schluck, F. Lehmann, G. and Spatschek, K. H. Phys. Plasmas 22, 093104 (2015).
11. Jia, Q. Barth, I. Edwards, M. R. Mikhailova, J. M. and Fisch, N. J. Phys. Plasmas 23, 053118 (2016).
12. Tsidulko, Yu. A. Malkin, V. M. and Fisch, N. J. Phys. Rev. Lett. 88, 235004 (2002).
13. Froula, D. H. Divol, L. and Glenzer, S. H. Phys. Rev. Lett. 88, 105003 (2002).
14. Cohen, B. I. Lasinski, B. F. Langdon, A. B. and Williams, E. A. Phys. Plasmas 4, 956 (1997).
15. Rozmus, W. Casanova, M. Pesme, D. Heron, A. and Adam, J. Phys. Fluids B 4, 576 (1992).
16. Rambo, P. W. Wilks, S. C. and Kruer, W. L. Phys. Rev. Lett. 79, 83 (1997).
17. Pawley, C. J. Huey, H. E. and Luhmann, N. C. Phys. Rev. Lett. 49, 877 (1982).
18. Weber, S. Riconda, C. and Tikhonchuk, V. T. Phys. Rev. Lett. 94, 055005 (2005).
19. Weber, S. Riconda, C. and Tikhonchuk, V. T. Phys. Plasmas 12, 043101 (2005).
20. Williams, E. A. Berger, R. L. Drake, R. P. Rubenchik, A. M. Bauer, B. S. Meyerhofer, D. D. Gaeris, A. C. and Johnston, T. W. Phys. Plasmas 2, 129 (1995).
21. Feng, Q. S. Zheng, C. Y. Liu, Z. J. Xiao, C. Z. Wang, Q. and He, X. T. Phys. Plasmas 23, 082106 (2016).
22. Feng, Q. S. Xiao, C. Z. Wang, Q. Zheng, C. Y. Liu, Z. J. Cao, L. H. and He, X. T. Phys. Rev. E 94, 023205 (2016).
23. Drake, J. F. Kaw, P. K. Lee, Y. C. Schmid, G. Liu, C. S. and Rosenbluth, M. N. Phys. Fluids 17, 778 (1974).
24. Liu, Z. J. He, X. T. Zheng, C. Y. and Wang, Y. G. Chin. Phys. B 21, 015202 (2012).
25. Liu, Z. J. Zhu, S. P. Cao, L. H. Zheng, C. Y. He, X. T. and Wang, Y. Phys. Plasmas 16, 112703 (2009).
26. Feng, Q. S. Zheng, C. Y. Liu, Z. J. Cao, L. H. Wang, Q. Xiao, C. Z. and He, X. T. Phys. Plasmas 25, 092112 (2018).
27. Zhao, Y. Sheng, Z. Weng, S. Ji, S. and Zhu, J. High Power Laser Sci. Eng. 7, 20 (2019).
28. Weber, S. and Riconda, C. High Power Laser Sci. Eng. 3, e51 (2015).
29. Xiao, C. Z. Liu, Z. J. Wu, D. Zheng, C. Y. and He, X. T. Phys. Plasmas 22, 052121 (2015).
30. Xiao, C. Z. Liu, Z. J. Zheng, C. Y. and He, X. T. Phys. Plasmas 23, 022704 (2016).
31. Feng, Q. S. Zheng, C. Y. Liu, Z. J. Cao, L. H. Xiao, C. Z. Wang, Q. Zhang, H. C. and He, X. T. Plasma Phys. Control. Fusion 59, 085007 (2017).
32. Feng, Q. S. Liu, Z. J. Zheng, C. Y. Xiao, C. Z. Wang, Q. Zhang, H. C. Cao, L. H. and He, X. T. Plasma Phys. Control. Fusion 59, 075007 (2017).
33. Berger, R. L. Suter, L. J. Divol, L. London, R. A. Chapman, T. Froula, D. H. Meezan, N. B. Neumayer, P. and Glenzer, S. H. Phys. Rev. E 91, 031103(R) (2015).
34. Lindl, J. D. Amendt, P. Berger, R. L. Glendinning, S. G. Glenzer, S. H. Haan, S. W. Kauffman, R. L. Landen, O. L. and Suter, L. J. Phys. Plasmas 11, 339 (2004).
35. Forslund, D. W. Kindel, J. M. and Lindman, E. L. Phys. Fluids 18, 1002 (1975).
36. Tang, C. L. J. Appl. Phys. 37, 2945 (1966).
37. Huang, T. W. Zhou, C. T. Robinson, A. P. L. Qiao, B. Zhang, H. Wu, S. Z. Zhuo, H. B. Norreys, P. A. and He, X. T. Phys. Rev. E 92, 053106 (2015).
38. Bychenkov, V. Y. Rozmus, W. Brantov, A. V. and Tikhonchuk, V. T. Phys. Plasmas 7, 1511 (2000).
39. Fonseca, R. Silva, L. Tsung, F. Decyk, V. Lu, W. Ren, C. Mori, W. Deng, S. Lee, S. Katsouleas, T. and Adam, J. C. Lect. Notes Comput. Sci. 2331, 342 (2002).
40. Hao, L. Zhao, Y. Q. Yang, D. Liu, Z. J. Hu, X. Y. Zheng, C. Y. Zou, S. Y. Wang, F. Peng, X. S. Li, Z. C. Li, S. W. Xu, T. and Wei, H. Y. Phys. Plasmas 21, 072705 (2014).
41. Hao, L. Li, J. Liu, W. D. Yan, R. and Ren, C. Phys. Plasmas 23, 042702 (2016).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Burst behavior due to the quasimode excited by stimulated Brillouin scattering in high-intensity laser–plasma interactions

  • Q. S. Feng (a1), L. H. Cao (a1) (a2) (a3), Z. J. Liu (a1) (a2), C. Y. Zheng (a1) (a2) (a3) and X. T. He (a1) (a2) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed