Skip to main content Accessibility help

Potential feedbacks between loss of biosphere integrity and climate change

  • Steven J. Lade (a1) (a2) (a3), Jon Norberg (a1), John M. Anderies (a4), Christian Beer (a3) (a5) (a6), Sarah E. Cornell (a1), Jonathan F. Donges (a1) (a7), Ingo Fetzer (a1) (a3), Thomas Gasser (a8), Katherine Richardson (a9), Johan Rockström (a1) (a7) and Will Steffen (a1) (a2)...

Non-technical abstract

Individual organisms on land and in the ocean sequester massive amounts of the carbon emitted into the atmosphere by humans. Yet the role of ecosystems as a whole in modulating this uptake of carbon is less clear. Here, we study several different mechanisms by which climate change and ecosystems could interact. We show that climate change could cause changes in ecosystems that reduce their capacity to take up carbon, further accelerating climate change. More research on – and better governance of – interactions between climate change and ecosystems is urgently required.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Potential feedbacks between loss of biosphere integrity and climate change
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Potential feedbacks between loss of biosphere integrity and climate change
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Potential feedbacks between loss of biosphere integrity and climate change
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Dr Steven Lade, E-mail:


Hide All
Adair, E. C., Hooper, D. U., Paquette, A., & Hungate, B. A. (2018). Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. Ecology Letters, 21(11), 16041619.
Ahlström, A., Xia, J., Arneth, A., Luo, Y., & Smith, B. (2015). Importance of vegetation dynamics for future terrestrial carbon cycling. Environmental Research Letters, 10(5), 054019.
Anderies, J. M., Carpenter, S., Steffen, W., & Rockström, J. (2013). The topology of non-linear global carbon dynamics: From tipping points to planetary boundaries. Environmental Research Letters, 8(4), 044048.
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., … Wu, T. (2013). Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. Journal of Climate, 26(15), 52895314.
Ash, J. D., Givnish, T. J., & Waller, D. M. (2016). Tracking lags in historical plant species’ shifts in relation to regional climate change. Global Change Biology, 23(3), 13051315.
Beaugrand, G., Edwards, M., & Legendre, L. (2010). Marine biodiversity, ecosystem functioning, and carbon cycles. Proceedings of the National Academy of Sciences of the United States of America, 107(22), 1012010124.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365377.
Bertrand, R., Lenoir, J., Piedallu, C., Riofrío-Dillon, G., De Ruffray, P., Vidal, C., … Gégout, J.-C. (2011). Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479(7374), 517520.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., … Vichi, M. (2013). Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10, 62256245.
Burke, E. J., Chadburn, S. E., & Ekici, A. (2017). A vertical representation of soil carbon in the JULES land surface scheme (vn4.3 permafrost) with a focus on permafrost regions. Geoscientific Model Development, 10(2), 959975.
Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., … Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 5967.
Castro-Izaguirre, N., Chi, X., Baruffol, M., Tang, Z., Ma, K., Schmid, B., & Niklaus, P. A. (2016). Tree diversity enhances stand carbon storage but not leaf area in a subtropical forest. PloS One, 11(12), e0167771.
Chadburn, S. E., Burke, E., Cox, P., Friedlingstein, P., Hugelius, G., & Westermann, S. (2017). An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change, 7(5), 340344.
Chapin, F. S., Randerson, J. T., McGuire, A. D., Foley, J. A., & Field, C. B. (2008). Changing feedbacks in the climate–biosphere system. Frontiers in Ecology and the Environment, 6(6), 313320.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., … Thornton, P. (2013). Carbon and other biogeochemical cycles. In Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., … Midgley, P. M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465570). Cambridge University Press.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., … Wehner, M. (2013). Long-term climate change: projections, commitments and irreversibility. In Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., … Midgley, P. M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 10291136). Cambridge University Press.
Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to quaternary climate change. Science, 292(5517), 673679.
Dıaz, S., & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16(11), 646655.
Díaz, S., Wardle, D. A., & Hector, A. (2009). Incorporating biodiversity in climate change mitigation initiatives. In Naeem, S., Bunker, D. E., Hector, A., Loreau, M., & Perring, C. (Eds.), Biodiversity, Ecosystem Functioning, and Human Wellbeing – An Ecological and Economic Perspective. Oxford University Press.
Dorren, L. K., Berger, F., Imeson, A. C., Maier, B., & Rey, F. (2004). Integrity, stability and management of protection forests in the European alps. Forest Ecology and Management, 195(1–2), 165176.
Ekici, A., Beer, C., Hagemann, S., Boike, J., Langer, M., & Hauck, C. (2014). Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model. Geoscientific Model Development, 7(2), 631647.
Enquist, B. J., Norberg, J., Bonser, S. P., Violle, C., Webb, C. T., Henderson, A., … Savage, V. M. (2015). Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Advances in Ecological Research, 52, 249318.
Essl, F., Dullinger, S., Rabitsch, W., Hulme, P. E., Pyšek, P., Wilson, J. R., & Richardson, D. M. (2015). Delayed biodiversity change: no time to waste. Trends in Ecology & Evolution, 30(7), 375378.
Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35, 557581.
Friedlingstein, P., Bopp, L., Ciais, P., Dufresne, J.-L., Fairhead, L., LeTreut, H., … Orr, J. (2001). Positive feedback between future climate change and the carbon cycle. Geophysical Research Letters, 28(8), 15431546.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., … Zeng, N. (2006). Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. Journal of Climate, 19(14), 33373353.
Gaffney, O., & Steffen, W. (2017). The Anthropocene equation. The Anthropocene Review, 4, 5361.
García, F. C., Bestion, E., Warfield, R., & Yvon-Durocher, G. (2018). Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 115(43), 1098910994.
Gasser, T., Ciais, P., Boucher, O., Quilcaille, Y., Tortora, M., Bopp, L., & Hauglustaine, D. (2017). The compact earth system model OSCAR v2.2: description and first results. Geoscientific Model Development, 10(1), 271319.
Gasser, T., Kechiar, M., Ciais, P., Burke, E., Kleinen, T., Zhu, D., … Obersteiner, M. (2018). Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nature Geoscience, 11(11), 830835.
Gregory, J. M., Jones, C., Cadule, P., & Friedlingstein, P. (2009). Quantifying carbon cycle feedbacks. Journal of Climate, 22(19), 52325250.
Guimberteau, M., Zhu, D., Maignan, F., Huang, Y., Chao, Y., Dantec-Nédélec, S., … Ciais, P. (2018). ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation. Geoscientific Model Development, 11(1), 121163.
Hagemann, S., Blome, T., Ekici, A., & Beer, C. (2016). Soil-frost-enabled soil–moisture–precipitation feedback over northern high latitudes. Earth System Dynamics, 7(3), 611625.
Hautier, Y., Tilman, D., Isbell, F., Seabloom, E. W., Borer, E. T., & Reich, P. B. (2015). Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 348(6232), 336340.
Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E., Hungate, B. A., Matulich, K. L., … O'Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486(7401), 105108.
House, J., Brovkin, V., Betts, R., Constanza, B., Assunçao, M., Dias, S., … Nishioka, S. (2005). Climate and air quality. In Hassan, R., Scholes, R., & Ash, N. (Eds.), Ecosystems and Human Well-Being: Current State and Trends (pp. 355390). Island Press.
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R., Feddema, J., Fischer, G., … Wang, Y. P. (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109(1–2), 117.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., … Eisenhauer, N. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526(7574), 574577.
Isbell, F., Gonzalez, A., Loreau, M., Cowles, J., Diaz, S., Hector, A., … Larigauderie, A. (2017). Linking the influence and dependence of people on biodiversity across scales. Nature, 546(7656), 6572.
Joos, F., Bruno, M., Fink, R., Siegenthaler, U., Stocker, T. F., Le Quere, C., & Sarmiento, J. L. (1996). An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus B, 48(3), 397417.
Karr, J. R. (1990). Biological integrity and the goal of environmental legislation: lessons for conservation biology. Conservation Biology, 4(3), 244250.
Koven, C. D., Schuur, E., Schädel, C., Bohn, T., Burke, E., Chen, G., … Turetsky, M. (2015). A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions. Series A. Methematical, Physical, and Engineering Sciences, 373(2054), 20140423.
Lade, S. J., Donges, J. F., Fetzer, I., Anderies, J. M., Beer, C., Cornell, S. E., … Steffen, W. (2018). Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing. Earth System Dynamics, 9, 507523.
Lawrence, D. M., Koven, C., Swenson, S. C., Riley, W., & Slater, A. (2015). Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environmental Research Letters, 10(9), 094011.
Lenton, T., Schellnhuber, H., & Szathmáry, E. (2004). Climbing the co-evolution ladder. Nature, 431(7011), 913913.
Liang, J., Crowther, T. W., Picard, N., Wiser, S., Zhou, M., Alberti, G., … Reich, P. B. (2016). Positive biodiversity–productivity relationship predominant in global forests. Science, 354(6309), aaf8957.
Liang, J., Zhou, M., Tobin, P. C., McGuire, A. D., & Reich, P. B. (2015). Biodiversity influences plant productivity through niche–efficiency. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 57385743.
Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462(7276), 10521055.
MacDougall, A. H., Zickfeld, K., Knutti, R., & Matthews, H. D. (2015). Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environmental Research Letters, 10(12), 125003.
Mace, G. M., Reyers, B., Alkemade, R., Biggs, R., Chapin, F. S., Cornell, S. E., … Woodward, G. (2014). Approaches to defining a planetary boundary for biodiversity. Global Environmental Change, 28, 289297.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M., Lamarque, J., … van Vuuren, D. P. (2011a). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1–2), 213.
Meinshausen, M., Wigley, T., & Raper, S. (2011b). Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – part 2: applications. Atmospheric Chemistry and Physics, 11(4), 14571471.
Memmott, J., Craze, P. G., Waser, N. M., & Price, M. V. (2007). Global warming and the disruption of plant–pollinator interactions. Ecology Letters, 10(8), 710717.
Miles, L., Dunning, E., Doswald, N., & Osti, M. (2010). A safer bet for REDD+: review of the evidence on the relationship between biodiversity and the resilience of forest carbon stocks. Working Paper v2. Multiple Benefits Series, 10. Prepared on behalf of the UN-REDD Programme. UNEP World Conservation Monitoring Centre.
Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb, M. J., Matthews, H. D., … Allen, M. R. (2017). Emission budgets and pathways consistent with limiting warming to 1.5°C. Nature Geoscience, 10(10), 741747.
Mora, F. (2017). A structural equation modeling approach for formalizing and evaluating ecological integrity in terrestrial ecosystems. Ecological Informatics, 41, 7490.
Morin, X., Fahse, L., Jactel, H., Scherer-Lorenzen, M., García-Valdés, R., & Bugmann, H. (2018). Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Scientific Reports, 8(1), 5627.
Myhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. (1998). New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25(14), 27152718.
Naeem, S. (2002). Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology, 83(6), 15371552.
Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A., Ferrier, S., … Purvis, A. (2016). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science, 353(6296), 288291.
Norberg, J. (2004). Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnology and Oceanography, 49(4 Pt 2), 12691277.
Norberg, J., Swaney, D. P., Dushoff, J., Lin, J., Casagrandi, R., & Levin, S. A. (2001). Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. Proceedings of the National Academy of Sciences, 98(20), 1137611381.
Parrish, J. D., Braun, D. P., & Unnasch, R. S. (2003). Are we conserving what we say we are? Measuring ecological integrity within protected areas. BioScience, 53(9), 851860.
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.-C., … Williams, S. E. (2017). Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science, 355(6332), eaai9214.
Pereira, H. M., Leadley, P. W., Proença, V., Alkemade, R., Scharlemann, J. P., Fernandez-Manjarrés, J. F., … Walpole, M. (2010). Scenarios for global biodiversity in the 21st century. Science, 330(6010), 14961501.
Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., … Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187), 1246752.
Poorter, L., van der Sande, M., Thompson, J., Arets, E., Alarcón, A., Álvarez-Sánchez, J., … Peña-Claros, M. (2015). Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24(11), 13141328.
Porada, P., Ekici, A., & Beer, C. (2016). Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. The Cryosphere, 10(5), 22912315.
Prentice, I. C., Bondeau, A., Cramer, W., Harrison, S. P., Hickler, T., Lucht, W., … Sykes, M. T. (2007). Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. In Canadell, J. G., Pataki, D. E., & Pitelka, L. F. (Eds.), Terrestrial Ecosystems in a Changing World (pp. 175192). Springer Berlin Heidelberg.
Purves, D., Scharlemann, J. P., Harfoot, M., Newbold, T., Tittensor, D. P., Hutton, J., & Emmott, S. (2013). Ecosystems: time to model all life on Earth. Nature, 493(7432), 295297.
Raupach, M. R. (2013). The exponential eigenmodes of the carbon–climate system, and their implications for ratios of responses to forcings. Earth System Dynamics, 4(1), 3149.
Raupach, M. R., Canadell, J. G., Ciais, P., Friedlingstein, P., Rayner, P. J., & Trudinger, C. M. (2011). The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon–climate–human system. Tellus B, 63(2), 145164.
Richardson, K., & Bendtsen, J. (2019). The vertical distribution of phytoplankton and primary production in relation to nutricline depth in the open ocean. Marine Ecology Progress Series, 620, 3346.
Ricketts, T. H., Watson, K. B., Koh, I., Ellis, A. M., Nicholson, C. C., Posner, S., … Sonter, L. J. (2016). Disaggregating the evidence linking biodiversity and ecosystem services. Nature Communications, 7, 13106.
Riebesell, U., Bach, L. T., Bellerby, R. G., Monsalve, J. R. B., Boxhammer, T., Czerny, J., … Schulz, K. G. (2017). Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nature Geoscience, 10(1), 1923.
Sax, D. F., & Gaines, S. D. (2003). Species diversity: from global decreases to local increases. Trends in Ecology & Evolution, 18(11), 561566.
Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A., & Witt, R. (2014). The impact of the permafrost carbon feedback on global climate. Environmental Research Letters, 9(8), 085003.
Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., … Waha, K. (2018). LPJmL4 – a dynamic global vegetation model with managed land – part 1: Model description. Geoscientific Model Development, 11(4), 13431375.
Schellnhuber, H. J. (2010). Tragic triumph. Climatic Change, 100(1), 229238.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., … Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 4956.
Schneider von Deimling, T., Grosse, G., Strauss, J., Schirrmeister, L., Morgenstern, A., Schaphoff, S., … Boike, J. (2015). Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences, 12(11), 34693488.
Scholes, R., & Biggs, R. (2005). A biodiversity intactness index. Nature, 434(7029), 45.
Schuur, E., McGuire, A. D., Schädel, C., Grosse, G., Harden, J., Hayes, D., … Vonk, J. E. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546), 171179.
Segschneider, J., & Bendtsen, J. (2013). Temperature-dependent remineralization in a warming ocean increases surface pCO2 through changes in marine ecosystem composition. Global Biogeochemical Cycles, 27(4), 12141225.
Settele, J., Scholes, R., Betts, R. A., Bunn, S., Leadley, P., Nepstad, D., … Taboada, M. A. (2015). Terrestrial and inland water systems. In Field, C. B., Barros, V. R., Dokken, D. J., March, K. J., Mastandrea, M. D., Bilir, T. E., … White, L. L. (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 271359). Cambridge University Press.
Sigman, D. M., & Boyle, E. A. (2000). Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407(6806), 859869.
Solomon, A. M., & Kirilenko, A. P. (1997). Climate change and terrestrial biomass: what if trees do not migrate? Global Ecology and Biogeography Letters, 6(2), 139148.
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., … Sörlin, S. (2015). Planetary boundaries: guiding human development on a changing planet. Science, 347(6223), 1259855.
Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., … Schellnhuber, H. J. (2018). Trajectories of the Earth system in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 115(33), 82528259.
Sullivan, M. J., Talbot, J., Lewis, S. L., Phillips, O. L., Qie, L., Begne, S. K., … Zemagho, L. (2017, January). Diversity and carbon storage across the tropical forest biome. Scientific Reports, 7, 39102.
Svenning, J.-C., & Sandel, B. (2013). Disequilibrium vegetation dynamics under future climate change. American Journal of Botany, 100(7), 12661286.
Thompson, I., Mackey, B., McNulty, S., & Mosseler, A. (2009). Forest Resilience, Biodiversity, and Climate Change. A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems. Technical Series no. 43. Secretariat of the Convention on Biological Diversity.
Thompson, P. L., Isbell, F., Loreau, M., O'Connor, M. I., & Gonzalez, A. (2018). The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proceedings. Biological Sciences, 285(1880), 20180038.
Van de Perre, F., Willig, M. R., Presley, S. J., Bapeamoni Andemwana, F., Beeckman, H., Boeckx, P., … Verheyen, E. (2018). Reconciling biodiversity and carbon stock conservation in an Afrotropical forest landscape. Science Advances, 4(3), eaar6603.
van der Plas, F. (2019). Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews, 94, 12201245.
Van Minnen, J. G., Leemans, R., & Ihle, F. (2000). Defining the importance of including transient ecosystem responses to simulate C-cycle dynamics in a global change model. Global Change Biology, 6(6), 595611.
van Vuuren, D., Sala, O., & Pereira, H. (2006). The future of vascular plant diversity under four global scenarios. Ecology and Society, 11(2), 25.
Visser, M. E. (2008). Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings. Biological Sciences, 275(1635), 649659.
Weisser, W. W., Roscher, C., Meyer, S. T., Ebeling, A., Luo, G., Allan, E., … Eisenhauer, N. (2017). Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic and Applied Ecology, 23(C), 173.
Wieczynski, D. J., Boyle, B., Buzzard, V., Duran, S. M., Henderson, A. N., Hulshof, C. M., … Savage, V. M. (2019). Climate shapes and shifts functional biodiversity in forests worldwide. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 587592.
Xia, J., Niu, S., Ciais, P., Janssens, I. A., Chen, J., Ammann, C., … Luo, Y. (2015). Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 112(9), 27882793.
Yue, C., Ciais, P., Luyssaert, S., Li, W., McGrath, M. J., Chang, J., & Peng, S. (2018). Representing anthropogenic gross land use change, wood harvest, and forest age dynamics in a global vegetation model ORCHIDEE-MICT v8. 4.2. Geoscientific Model Development, 11(1), 409428.
Zhang, T., Niinemets, Ü., Sheffield, J., & Lichstein, J. W. (2018). Shifts in tree functional composition amplify the response of forest biomass to climate. Nature, 556, 99102.
Zickfeld, K., Eby, M., Matthews, H. D., Schmittner, A., & Weaver, A. J. (2011). Nonlinearity of carbon cycle feedbacks. Journal of Climate, 24(16), 42554275.


Potential feedbacks between loss of biosphere integrity and climate change

  • Steven J. Lade (a1) (a2) (a3), Jon Norberg (a1), John M. Anderies (a4), Christian Beer (a3) (a5) (a6), Sarah E. Cornell (a1), Jonathan F. Donges (a1) (a7), Ingo Fetzer (a1) (a3), Thomas Gasser (a8), Katherine Richardson (a9), Johan Rockström (a1) (a7) and Will Steffen (a1) (a2)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed