Skip to main content Accessibility help
×
Home

IMAGES OF WORD MAPS IN FINITE SIMPLE GROUPS

  • ALEXANDER LUBOTZKY (a1)

Abstract

In response to questions by Kassabov, Nikolov and Shalev, we show that a given subset A of a finite simple group G is the image of some word map w : G × GG if and only if (i) A contains the identity and (ii) A is invariant under Aut(G).

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      IMAGES OF WORD MAPS IN FINITE SIMPLE GROUPS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      IMAGES OF WORD MAPS IN FINITE SIMPLE GROUPS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      IMAGES OF WORD MAPS IN FINITE SIMPLE GROUPS
      Available formats
      ×

Copyright

References

Hide All
1.Guralnick, R. M. and Kantor, W. M., Probabilistic generation of finite simple groups. Special issue in honor of Helmut Wielandt, J. Algebra 234 (2000), 743792.
2.Hadad, U., On the shortest identity in finite simple groups of Lie type, J. Group Theory 14 (2011), 3747.
3.Jambor, S., Liebeck, M. W. and O'Brien, E. A., Some word maps that are non-surjective on infinitely many finite simple groups, Bull. LMS (2013), doi: 101112/blms/bdt10. (arXiv:1205.1952).
4.Kantor, W. M. and Lubotzky, A., The probability of generating a finite classical group, Geom. Dedicata 36 (1990), 6787.
5.Kassabov, M. and Nikolov, N., Words with few values in finite simple groups, preprint (arXiv:1112.5484). Q. J. Math. (2012), doi: 10.1093/qmath/has018.
6.Larsen, M., Shalev, A. and Tiep, P. H., The Waring problem for finite simple groups, Ann. Math. 174 (2011), 18851950.
7.Levy, M., Word maps with small image in simple groups, preprint (arXiv:1206.1206).
8.Levy, M., Images of word maps in almost simple groups and quasisimple groups, preprint (arXiv:1301.7188).
9.Liebeck, M. W., O'Brien, E. A., Shalev, A. and Tiep, P. H., The Ore conjecture, J. Eur. Math. Soc. 12 (2010), 9391008.
10.Segal, D., Words: Notes on verbal width in groups, London Mathematical Society Lecture Note Series, 361 (Cambridge University Press, Cambridge, UK, 2009), xii+121 pp.
11.Spenko, S., On the image of a noncommutative polynomial, J. Algebra 377 (2013), 298311.
12.Wilson, J. S., Finite index subgroups and verbal subgroups in profinite groups, Séminaire Bourbaki, vol. 2009/2010. Exposés 1012–1026. Astérisque No. 339 (2011), Exp. No. 1026, x, 387–408.

Keywords

IMAGES OF WORD MAPS IN FINITE SIMPLE GROUPS

  • ALEXANDER LUBOTZKY (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.