Skip to main content Accessibility help
×
Home

Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia

  • P. Montero (a1), F. Bea (a1), F. González-Lodeiro (a2), C. Talavera (a1) and M. J. Whitehouse (a3)...

Abstract

Dating the pre-Middle Ordovician metavolcanic rocks and metagranites of the Ollo de Sapo Domain has, historically, been difficult because of the small compositional variation, the effects of the Variscan orogeny and, as revealed in this paper, the unusually high fraction of inherited zircon components. The first reliable zircon data (U–Pb ion microprobe and Pb–Pb stepwise evaporation) indicate that the Ollo de Sapo volcanism spanned 495±5 Ma to 483±3 Ma, and was followed by the intrusion of high-level granites from 483±3 Ma to 474±4 Ma. In both metavolcanic rocks and metagranites, no less than 70–80% of zircon grains are either totally Precambrian or contain a Precambrian core overgrown by a Cambro-Ordovician rim. About 80–90% of inherited zircons are Early Ediacaran (602–614 Ma) and derived from calc-alkaline intermediate to felsic igneous rocks generated at the end of the Pan-African arc–continent collision. In the Villadepera region, located to the west, both the metagranites and metavolcanic rocks also contain Meso-Archaean zircons (3.0–3.2 Ga) which ultimately originated from the West African Craton. In the Hiendelaencina region, located to the east, both the metagranites and metavolcanic rocks lack Meso-Archaean zircons, but they have two different inherited zircon populations, one Cryogenian (650–700 Ma) and the other Tonian (850–900 Ma), which suggest older-than-Ediacaran additional island-arc components. The different proportion of source components and the marked variation of the 87Sr/86Srinit. suggest, at least tentatively, that the across-arc polarity of the remnants of the Pan-African arc of Iberia trended east–west (with respect to the current coordinates) during Cambro-Ordovician times, and that the passive margin was situated to the west.

Copyright

Corresponding author

§Author for correspondence: fbea@ugr.es

References

Hide All
Barbey, P., Cheilletz, A. & Laumonier, B. 2001. The Canigou orthogneisses (Eastern Pyrenees, France, Spain): an early Ordovician rapakivi granite laccolith and its contact aureole. Comptes rendus Geoscience 332, 129–36.
Bea, F., Montero, P. & Ortega, M. 2006. A LA-ICPMS evaluation of Zr reservoirs in common crustal rocks: implications for Zr and Hf geochemistry, and zircon-forming processes. Canadian Mineralogist 44, 693714.
Bea, F., Montero, P., Talavera, C. & Zinger, T. 2006. A revised Ordovician age for the oldest magmatism of Central Iberia: U–Pb ion microprobe and LA-ICPMS dating of the Miranda do Douro orthogneiss. Geologica Acta 4, 395401.
Bea, F., Montero, P. & Zinger, T. 2003. The Nature and Origin of the Granite Source Layer of Central Iberia: Evidence from Trace Element, Sr and Nd Isotopes, and Zircon Age Patterns. Journal of Geology 111, 579–95.
Bultynck, P. & Soers, E. 1971. Le Silurien supérieur et le Dévonien inférieur de la Sierra de Guadarrama (Espagne Central). Bulletin Institute Royal Sciences Naturelles de Belgique 47, 122.
Delaperrière, E. & Respaut, J. P. 1995. Un âge ordovicien de l'orthogneiss de la Preste par la méthode d'évaporation directe du plomb sur monozircon remet en question l'existence d'un socle précambrien dans le Massif du Canigou (Pyrénées Orientales, France). Comptes rendus Geoscience 320, 1179–85.
Deloule, E., Alexandrov, P., Cheilletz, A., Laumonier, B. & Barbey, P. 2002. In-situ U-Pb zircon ages for Early Ordovician magmatism in the eastern Pyrenees, France: the Canigou orthogneisses. International Journal of Earth Sciences 91, 398405.
Díaz Montes, A., Navidad, M., González-Lodeiro, F. & Martínez Catalán, J. R. 2004. El Ollo de Sapo. In Geología de España (ed. Vera, J. A.), pp. 6972. Madrid: SGE-IGME.
Ennih, N. & Liégeois, J. P. 2001. The Moroccan Anti-Atlas: the West Africa craton passive margin with limited Pan-African activity. Implications for the northern limit of the craton. Precambrian Research 112, 289302.
Ennih, N. & Liégeois, J. P. 2003. The Moroccan Anti-Atlas: the West Africa craton passive margin with limited Pan-African activity. Implications for the northern limit of the craton: reply to comments by E. H. Bouougri. Precambrian Research 120, 185–9.
Farias, P., Gallastegui, G., González-Lodeiro, F., Marquínez, J., Martín-Parra, L. M., Martínez Catalán, J. R., de Pablo Maciá, J. G. & Rodríguez Fernández, L. R. 1987. Aportaciones al conocimiento de la litoestratigrafía y estructura de Galicia Central. Memorias Museu Laboratorio Mineralogia Geologia Faculdade Ciências Universidade do Porto 1, 411–31.
Friedl, G., Finger, F., Paquette, J. L., von Quadt, A., McNaughton, N. J. & Fletcher, I. R. 2004. Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. International Journal of Earth Sciences 93, 802–23.
Gasquet, D., Levresse, G., Cheillez, A., Azizi-Samir, M. R. & Mouttaqi, A. 2005. Contribution to a geodynamic reconstruction of the Anti-Atlas Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian–Cambrian transition. Precambrian Research 140, 157–82.
González-Lodeiro, F. 1981 a. Posición de las series infraordovícicas en el extremo oriental del Sistema Central y su correlación. Cuadernos Laboratorio Xeoloxico de Laxe 2, 125–34.
González-Lodeiro, F. 1981 b. La estructura del anticlinorio del “Ollo de Sapo” en la región de Hiendelaencina (extremo oriental del Sistema Central Español). Cuadernos Geología Ibérica 7, 535–45.
Govindaraju, K., Potts, P. J., Webb, P. C. & Watson, J. S. 1994. 1994 Report on Whin Sill Dolerite WS-E from England and Pitscurrie Micrograbbro PM-S from Scotland: assessment by one hundred and four international laboratories. Geostandards Newsletter 18, 211300.
Gutiérrez Marco, J. C., Robardet, M., Rábano, I., Sarmiento, G. N., San José Lancha, M. A., Herranz, P. & Pieren Pidal, A. P. 2002. Ordovician. In The Geology of Spain (eds Gibbons, W. & Moreno, T.), pp. 3149. London: Geological Society.
Helbing, H. & Tiepolo, M. 2005. Age determination of Ordovician magmatism in NE Sardinia and its bearing on Variscan basement evolution. Journal of the Geological Society, London 162, 689700.
Iglesias Ponce de León, M. & Ribeiro, A. 1981. Position stratigraphique de la formation Ollo de Sapo dans la région de Zamora (Espagne)–Miranda do Douro (Portugal). Comunicaçoes Servicio Geologico de Portugal 67, 141–6.
Karabinos, P. 1997. An evaluation of the single-grain zircon evaporation method in highly discordant samples. Geochimica et Cosmochimica Acta 61, 2467–74.
Kober, B. 1987. Single-zircon evaporation combined with Pb+ emitter-bedding for 207Pb/206Pb age investigations using thermal ion mass spectrometry and implications to zirconology. Contributions to Mineralogy and Petrology 96, 6371.
Lancelot, J. R., Allegret, A. & Iglesias Ponce de León, M. 1985. Outline of Upper Precambrian and Lower Palaeozoic evolution of the Iberian Peninsula according to U–Pb dating of zircons. Earth and Planetary Science Letters 74, 325–37.
Laumonier, B., Autran, A., Barbey, P., Cheilletz, A., Baudin, T., Cocherie, A. & Guerrot, C. 2004. On the non-existence of a Cadomian basement in southern France (Pyrenees, Montagne Noire): implications for the significance of the pre-Variscan (pre-Upper Ordovcian) series. Bulletin Société Geologique de France 175, 643–55.
Mazur, S., Turniak, K. & Brocker, M. 2004. Neoproterozoic and Cambro-Ordovician magmatism in the Variscan Klodzko Metamorphic Complex (West Sudetes, Poland): new insights from U/Pb zircon dating. International Journal of Earth Sciences 93, 758–72.
Miller, C. F., McDowell, S. M. & Mapes, R. W. 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology 31, 529–32.
Montero, P. & Bea, F. 1998. Accurate determination of 87Rb/86Sr and 143Sm/144Nd ratios by inductively-coupled-plasma mass spectrometry in isotope geoscience: an alternative to isotope dilution analysis. Analytica Chimica Acta 358, 227–33.
Navidad, M., Peinado, M. & Casillas, R. 1992. El magmatismo pre-Hercínico del Centro Peninsular (Sistema Central Español). In Palaeozoico Inferior de Iberoamérica (eds Gutiérrez-Marco, J. C., Saavedra, J. & Rábano, I.), pp. 485–94. Badajoz: Univ. Extremadura.
Parga-Pondal, I., Matte, P. & Capdevila, R. 1964. Introduction a la geologie de “l'Ollo de Sapo”, formation porphyroide antesilurienne du nord ouest de l'Espagne. Notas y Comunicaciones del Instituto Geológico y Minero de España 76, 119–53.
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R. & Chenery, S. P. 1997. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards Newsletter 21, 115–44.
Reischmann, T., Bachtadse, V., Kröner, A. & Layer, P. 1992. Geochronology and paleomagnetism of a late Proterozoic island arc terrane from the Red Sea Hills, northeast Sudan. Earth and Planetary Science Letters 114, 115.
Roger, F., Respaut, J. P., Brunel, M., Matte, P. & Paquette, J. L. 2004. Première datation U–Pb des orthogneiss illés de la zone axiale de la Montagne noire (Sud du Massif central): nouveaux té moins du magmatisme ordovicien dans la chaîne Varisque. Comtes rendues Geoscience 336, 1928.
Schäfer, G. 1969. Geologie und Petrographie im östlichen Kastilischen Hauptscheidegebirge (Sierra de Guadarrama, Spanien). Münstersche Forschungen zur Geologie und Paläontologie 10, 1207.
Schaltegger, U. & Gebauer, D. 1999. Pre-Alpine geochronology of the Central, Western and Southern Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 79, 7987.
Schaltegger, U., Abrecht, J. & Corfu, F. 2003. The Ordovician orogeny in the Alpine basement: constraints from geochronology and geochemistry in the Aar Massif (Central Alps). Schweizerische Mineralogische und Petrographische Mitteilungen 83, 183–95.
Solá, A. R., Montero, P., Ribeiro, M. L., Neiva, A. M. R., Zinger, T. & Bea, F. 2005. Pb/Pb zircon age of the Carrascal Massif, central Portugal. Geochimica et Cosmochimica Acta 69 (10, Supplement 1, Goldschmidt Conference Abstracts), A856.
Solá, A. R., Pereira, M. F., Ribeiro, M. L., Neiva, A. M. R., Williams, I. S., Montero, P., Bea, F. & Zinger, T. 2006. The Urra Formation: Age and Precambrian inherited record. Resumos do VII Congresso Nacional de Geologia de Portugal, Universidade de Evora 1, 2932.
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.
Steiger, R. H. & Jäger, E. 1977. Subcommission on Geochronology. Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Lettters 36, 359–62.
Tahiri, A., Simancas, J. F., el Hadi, H., González-Lodeiro, F., Azor, A. & Martínez Poyatos, D. 2005. A comparison of the Neoproterozoic/Lower Palaeozoic lithostratigraphy of Morocco and southwestern Iberia. Geodynamic Interpretations. Geogaceta 38, 203–6.
Valverde Vaquero, P. & Dunning, G. R. 2000. New U–Pb ages for Early Ordovician magmatism in Central Spain. Journal of the Geological Society, London 157, 1526.
Vialette, Y., Casquet, C., Fúster, J. M., Ibarrola, E., Navidad, M., Peinado, M. & Villaseca, C. 1987. Geochronological study of orthogneisses from the Sierra de Guadarrama (Spanish Central System). Neues Jahrbuch für Mineralogie, Monatshefte 10, 465–79.
Whitehouse, M. J., Kamber, B. S. & Moorbath, S. 1999. Age significance of U–Th–Pb zircon data from early Archaean rocks of west Greenland – a reassessment based on combined ion-microprobe and imaging studies. Chemical Geology 160, 201–24.
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb Lu–Hf trace element and REE analysis. Geostandards Newsletter 19, 123.
Wildberg, H. G., Bischoff, L. & Baumann, A. 1989. U–Pb ages of zircons from meta-igneous and meta-sedimentary rocks of the Sierra de Guadarrama: Implications for the Central Iberia crustal evolution. Contributions to Mineralogy and Petrology 103, 253–62.
York, D. 1969. Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters 5, 320–4.
Zeck, H. P., Wingate, M. T. D., Pooley, G. D. & Ugidos, J. 2004. A Sequence of Pan-African and Hercynian Events Recorded in Zircons from an Orthogneiss from the Hercynian Belt of Western Central Iberia – an Ion Microprobe U–Pb Study. Journal of Petrology 45, 1613–29.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed