Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T06:27:55.128Z Has data issue: false hasContentIssue false

Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia

Published online by Cambridge University Press:  21 September 2007

P. Montero
Affiliation:
Department of Mineralogy and Petrology, Campus Fuentenueva, Univ. Granada, 18002 Granada, Spain
F. Bea*
Affiliation:
Department of Mineralogy and Petrology, Campus Fuentenueva, Univ. Granada, 18002 Granada, Spain
F. González-Lodeiro
Affiliation:
Department of Geodynamics, Campus Fuentenueva, Univ. Granada, 18002 Granada, Spain
C. Talavera
Affiliation:
Department of Mineralogy and Petrology, Campus Fuentenueva, Univ. Granada, 18002 Granada, Spain
M. J. Whitehouse
Affiliation:
Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
*
§Author for correspondence: fbea@ugr.es

Abstract

Dating the pre-Middle Ordovician metavolcanic rocks and metagranites of the Ollo de Sapo Domain has, historically, been difficult because of the small compositional variation, the effects of the Variscan orogeny and, as revealed in this paper, the unusually high fraction of inherited zircon components. The first reliable zircon data (U–Pb ion microprobe and Pb–Pb stepwise evaporation) indicate that the Ollo de Sapo volcanism spanned 495±5 Ma to 483±3 Ma, and was followed by the intrusion of high-level granites from 483±3 Ma to 474±4 Ma. In both metavolcanic rocks and metagranites, no less than 70–80% of zircon grains are either totally Precambrian or contain a Precambrian core overgrown by a Cambro-Ordovician rim. About 80–90% of inherited zircons are Early Ediacaran (602–614 Ma) and derived from calc-alkaline intermediate to felsic igneous rocks generated at the end of the Pan-African arc–continent collision. In the Villadepera region, located to the west, both the metagranites and metavolcanic rocks also contain Meso-Archaean zircons (3.0–3.2 Ga) which ultimately originated from the West African Craton. In the Hiendelaencina region, located to the east, both the metagranites and metavolcanic rocks lack Meso-Archaean zircons, but they have two different inherited zircon populations, one Cryogenian (650–700 Ma) and the other Tonian (850–900 Ma), which suggest older-than-Ediacaran additional island-arc components. The different proportion of source components and the marked variation of the 87Sr/86Srinit. suggest, at least tentatively, that the across-arc polarity of the remnants of the Pan-African arc of Iberia trended east–west (with respect to the current coordinates) during Cambro-Ordovician times, and that the passive margin was situated to the west.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbey, P., Cheilletz, A. & Laumonier, B. 2001. The Canigou orthogneisses (Eastern Pyrenees, France, Spain): an early Ordovician rapakivi granite laccolith and its contact aureole. Comptes rendus Geoscience 332, 129–36.Google Scholar
Bea, F., Montero, P. & Ortega, M. 2006. A LA-ICPMS evaluation of Zr reservoirs in common crustal rocks: implications for Zr and Hf geochemistry, and zircon-forming processes. Canadian Mineralogist 44, 693714.Google Scholar
Bea, F., Montero, P., Talavera, C. & Zinger, T. 2006. A revised Ordovician age for the oldest magmatism of Central Iberia: U–Pb ion microprobe and LA-ICPMS dating of the Miranda do Douro orthogneiss. Geologica Acta 4, 395401.Google Scholar
Bea, F., Montero, P. & Zinger, T. 2003. The Nature and Origin of the Granite Source Layer of Central Iberia: Evidence from Trace Element, Sr and Nd Isotopes, and Zircon Age Patterns. Journal of Geology 111, 579–95.Google Scholar
Bultynck, P. & Soers, E. 1971. Le Silurien supérieur et le Dévonien inférieur de la Sierra de Guadarrama (Espagne Central). Bulletin Institute Royal Sciences Naturelles de Belgique 47, 122.Google Scholar
Delaperrière, E. & Respaut, J. P. 1995. Un âge ordovicien de l'orthogneiss de la Preste par la méthode d'évaporation directe du plomb sur monozircon remet en question l'existence d'un socle précambrien dans le Massif du Canigou (Pyrénées Orientales, France). Comptes rendus Geoscience 320, 1179–85.Google Scholar
Deloule, E., Alexandrov, P., Cheilletz, A., Laumonier, B. & Barbey, P. 2002. In-situ U-Pb zircon ages for Early Ordovician magmatism in the eastern Pyrenees, France: the Canigou orthogneisses. International Journal of Earth Sciences 91, 398405.Google Scholar
Díaz Montes, A., Navidad, M., González-Lodeiro, F. & Martínez Catalán, J. R. 2004. El Ollo de Sapo. In Geología de España (ed. Vera, J. A.), pp. 6972. Madrid: SGE-IGME.Google Scholar
Ennih, N. & Liégeois, J. P. 2001. The Moroccan Anti-Atlas: the West Africa craton passive margin with limited Pan-African activity. Implications for the northern limit of the craton. Precambrian Research 112, 289302.CrossRefGoogle Scholar
Ennih, N. & Liégeois, J. P. 2003. The Moroccan Anti-Atlas: the West Africa craton passive margin with limited Pan-African activity. Implications for the northern limit of the craton: reply to comments by E. H. Bouougri. Precambrian Research 120, 185–9.CrossRefGoogle Scholar
Farias, P., Gallastegui, G., González-Lodeiro, F., Marquínez, J., Martín-Parra, L. M., Martínez Catalán, J. R., de Pablo Maciá, J. G. & Rodríguez Fernández, L. R. 1987. Aportaciones al conocimiento de la litoestratigrafía y estructura de Galicia Central. Memorias Museu Laboratorio Mineralogia Geologia Faculdade Ciências Universidade do Porto 1, 411–31.Google Scholar
Friedl, G., Finger, F., Paquette, J. L., von Quadt, A., McNaughton, N. J. & Fletcher, I. R. 2004. Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. International Journal of Earth Sciences 93, 802–23.Google Scholar
Gasquet, D., Levresse, G., Cheillez, A., Azizi-Samir, M. R. & Mouttaqi, A. 2005. Contribution to a geodynamic reconstruction of the Anti-Atlas Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian–Cambrian transition. Precambrian Research 140, 157–82.Google Scholar
González-Lodeiro, F. 1981 a. Posición de las series infraordovícicas en el extremo oriental del Sistema Central y su correlación. Cuadernos Laboratorio Xeoloxico de Laxe 2, 125–34.Google Scholar
González-Lodeiro, F. 1981 b. La estructura del anticlinorio del “Ollo de Sapo” en la región de Hiendelaencina (extremo oriental del Sistema Central Español). Cuadernos Geología Ibérica 7, 535–45.Google Scholar
Govindaraju, K., Potts, P. J., Webb, P. C. & Watson, J. S. 1994. 1994 Report on Whin Sill Dolerite WS-E from England and Pitscurrie Micrograbbro PM-S from Scotland: assessment by one hundred and four international laboratories. Geostandards Newsletter 18, 211300.CrossRefGoogle Scholar
Gutiérrez Marco, J. C., Robardet, M., Rábano, I., Sarmiento, G. N., San José Lancha, M. A., Herranz, P. & Pieren Pidal, A. P. 2002. Ordovician. In The Geology of Spain (eds Gibbons, W. & Moreno, T.), pp. 3149. London: Geological Society.CrossRefGoogle Scholar
Helbing, H. & Tiepolo, M. 2005. Age determination of Ordovician magmatism in NE Sardinia and its bearing on Variscan basement evolution. Journal of the Geological Society, London 162, 689700.CrossRefGoogle Scholar
Iglesias Ponce de León, M. & Ribeiro, A. 1981. Position stratigraphique de la formation Ollo de Sapo dans la région de Zamora (Espagne)–Miranda do Douro (Portugal). Comunicaçoes Servicio Geologico de Portugal 67, 141–6.Google Scholar
Karabinos, P. 1997. An evaluation of the single-grain zircon evaporation method in highly discordant samples. Geochimica et Cosmochimica Acta 61, 2467–74.CrossRefGoogle Scholar
Kober, B. 1987. Single-zircon evaporation combined with Pb+ emitter-bedding for 207Pb/206Pb age investigations using thermal ion mass spectrometry and implications to zirconology. Contributions to Mineralogy and Petrology 96, 6371.CrossRefGoogle Scholar
Lancelot, J. R., Allegret, A. & Iglesias Ponce de León, M. 1985. Outline of Upper Precambrian and Lower Palaeozoic evolution of the Iberian Peninsula according to U–Pb dating of zircons. Earth and Planetary Science Letters 74, 325–37.Google Scholar
Laumonier, B., Autran, A., Barbey, P., Cheilletz, A., Baudin, T., Cocherie, A. & Guerrot, C. 2004. On the non-existence of a Cadomian basement in southern France (Pyrenees, Montagne Noire): implications for the significance of the pre-Variscan (pre-Upper Ordovcian) series. Bulletin Société Geologique de France 175, 643–55.Google Scholar
Mazur, S., Turniak, K. & Brocker, M. 2004. Neoproterozoic and Cambro-Ordovician magmatism in the Variscan Klodzko Metamorphic Complex (West Sudetes, Poland): new insights from U/Pb zircon dating. International Journal of Earth Sciences 93, 758–72.CrossRefGoogle Scholar
Miller, C. F., McDowell, S. M. & Mapes, R. W. 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology 31, 529–32.Google Scholar
Montero, P. & Bea, F. 1998. Accurate determination of 87Rb/86Sr and 143Sm/144Nd ratios by inductively-coupled-plasma mass spectrometry in isotope geoscience: an alternative to isotope dilution analysis. Analytica Chimica Acta 358, 227–33.CrossRefGoogle Scholar
Navidad, M., Peinado, M. & Casillas, R. 1992. El magmatismo pre-Hercínico del Centro Peninsular (Sistema Central Español). In Palaeozoico Inferior de Iberoamérica (eds Gutiérrez-Marco, J. C., Saavedra, J. & Rábano, I.), pp. 485–94. Badajoz: Univ. Extremadura.Google Scholar
Parga-Pondal, I., Matte, P. & Capdevila, R. 1964. Introduction a la geologie de “l'Ollo de Sapo”, formation porphyroide antesilurienne du nord ouest de l'Espagne. Notas y Comunicaciones del Instituto Geológico y Minero de España 76, 119–53.Google Scholar
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R. & Chenery, S. P. 1997. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards Newsletter 21, 115–44.Google Scholar
Reischmann, T., Bachtadse, V., Kröner, A. & Layer, P. 1992. Geochronology and paleomagnetism of a late Proterozoic island arc terrane from the Red Sea Hills, northeast Sudan. Earth and Planetary Science Letters 114, 115.CrossRefGoogle Scholar
Roger, F., Respaut, J. P., Brunel, M., Matte, P. & Paquette, J. L. 2004. Première datation U–Pb des orthogneiss illés de la zone axiale de la Montagne noire (Sud du Massif central): nouveaux té moins du magmatisme ordovicien dans la chaîne Varisque. Comtes rendues Geoscience 336, 1928.Google Scholar
Schäfer, G. 1969. Geologie und Petrographie im östlichen Kastilischen Hauptscheidegebirge (Sierra de Guadarrama, Spanien). Münstersche Forschungen zur Geologie und Paläontologie 10, 1207.Google Scholar
Schaltegger, U. & Gebauer, D. 1999. Pre-Alpine geochronology of the Central, Western and Southern Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 79, 7987.Google Scholar
Schaltegger, U., Abrecht, J. & Corfu, F. 2003. The Ordovician orogeny in the Alpine basement: constraints from geochronology and geochemistry in the Aar Massif (Central Alps). Schweizerische Mineralogische und Petrographische Mitteilungen 83, 183–95.Google Scholar
Solá, A. R., Montero, P., Ribeiro, M. L., Neiva, A. M. R., Zinger, T. & Bea, F. 2005. Pb/Pb zircon age of the Carrascal Massif, central Portugal. Geochimica et Cosmochimica Acta 69 (10, Supplement 1, Goldschmidt Conference Abstracts), A856.Google Scholar
Solá, A. R., Pereira, M. F., Ribeiro, M. L., Neiva, A. M. R., Williams, I. S., Montero, P., Bea, F. & Zinger, T. 2006. The Urra Formation: Age and Precambrian inherited record. Resumos do VII Congresso Nacional de Geologia de Portugal, Universidade de Evora 1, 2932.Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on Geochronology. Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Lettters 36, 359–62.Google Scholar
Tahiri, A., Simancas, J. F., el Hadi, H., González-Lodeiro, F., Azor, A. & Martínez Poyatos, D. 2005. A comparison of the Neoproterozoic/Lower Palaeozoic lithostratigraphy of Morocco and southwestern Iberia. Geodynamic Interpretations. Geogaceta 38, 203–6.Google Scholar
Valverde Vaquero, P. & Dunning, G. R. 2000. New U–Pb ages for Early Ordovician magmatism in Central Spain. Journal of the Geological Society, London 157, 1526.Google Scholar
Vialette, Y., Casquet, C., Fúster, J. M., Ibarrola, E., Navidad, M., Peinado, M. & Villaseca, C. 1987. Geochronological study of orthogneisses from the Sierra de Guadarrama (Spanish Central System). Neues Jahrbuch für Mineralogie, Monatshefte 10, 465–79.Google Scholar
Whitehouse, M. J., Kamber, B. S. & Moorbath, S. 1999. Age significance of U–Th–Pb zircon data from early Archaean rocks of west Greenland – a reassessment based on combined ion-microprobe and imaging studies. Chemical Geology 160, 201–24.Google Scholar
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb Lu–Hf trace element and REE analysis. Geostandards Newsletter 19, 123.Google Scholar
Wildberg, H. G., Bischoff, L. & Baumann, A. 1989. U–Pb ages of zircons from meta-igneous and meta-sedimentary rocks of the Sierra de Guadarrama: Implications for the Central Iberia crustal evolution. Contributions to Mineralogy and Petrology 103, 253–62.CrossRefGoogle Scholar
York, D. 1969. Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters 5, 320–4.Google Scholar
Zeck, H. P., Wingate, M. T. D., Pooley, G. D. & Ugidos, J. 2004. A Sequence of Pan-African and Hercynian Events Recorded in Zircons from an Orthogneiss from the Hercynian Belt of Western Central Iberia – an Ion Microprobe U–Pb Study. Journal of Petrology 45, 1613–29.Google Scholar