Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T16:14:20.091Z Has data issue: false hasContentIssue false

A U/Pb age for the Sulitjelma Gabbro, North Norway: further evidence for the development of a Caledonian marginal basin in Ashgill–Llandovery time

Published online by Cambridge University Press:  01 May 2009

Rolf-Birger Pedersen
Affiliation:
Geologisk Institutt, Avd. A, Allegt. 41, 5007 Bergen, Norway
Harald Furnes
Affiliation:
Geologisk Institutt, Avd. A, Allegt. 41, 5007 Bergen, Norway
Greg Dunning
Affiliation:
Department of Geology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, MSS 2C6, Canada

Abstract

The Sulitjelma Gabbro in the central Norwegian Caledonides has been dated with the U/Pb zircon/sphene method to 437±2 Ma. Geological relationships as well as trace-element geochemistry and Nd and Sr isotopic compositions suggest that the gabbro and associated dyke swarms and pillow lava formed during the initial stages of back-arc spreading. The age constrains the timing of juxtaposition of an older island-arc terrane and continental-margin lithologies exposed within the Caledonian nappes. The age of the gabbro is similar to that of the Solund–Stavfjord Ophiolite in west Norway, and confirms that spreading-related magmatism and marginal-basin development took place along the margin of Iapetus in late Ordovician–early Silurian times.

Type
Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous, , 1972. Penrose field conference on ophiolites. Geotimes 17, 24–5.Google Scholar
Barnes, S.-J. 1986. Temperature and pressures from the Råna Layered Intrusion, Nordland Norway (Abstract), 17 e Nordiska Geologmøtet, Helsingfors Universitetet, p. 11.Google Scholar
Bjørlykke, A. & Olausen, S. T. 1981. Silurian sediments, volcanics and mineral deposits in the Sagelvvatn area, Troms, North Norway. Norges Geologiske Undersøkelse 365, 138.Google Scholar
Bluck, B. J., Halliday, A. N., Aftalion, M. & Macintyre, R. M. 1980. Age and origin of Ballantrae ophiolite and its significance to the Caledonian orogeny and Ordovician time scale. Geology 8, 492–95.2.0.CO;2>CrossRefGoogle Scholar
Boyle, A. P. 1980. The Sulitjelma amphibolites, Norway: Part of a Lower Palaeozoic ophiolite complex? Proceedings of the International Ophiolite Symposium, Nicosia 1979, 567–75.Google Scholar
Boyle, A. P., Hansen, T. S. & Mason, R. 1985. A new tectonic perspective of the Sulitjelma Region. In The Caledonide Orogen–Scandinavia and Related Areas (eds. Gee, D. G. and Sturt, B. A.), pp. 529–42. New York: John Wiley & Sons.Google Scholar
Boyle, A. P. 1987. A model for stratigraphic and metamorphic inversions at Sulitjelma, central Scandes. Geological Magazine 124, 451–66CrossRefGoogle Scholar
Boyle, A. P. 1989. The geochemistry of the Sulitjelma ophiolite and associated basic volcanics: tectonic implications. In The Caledonide Geology of Scandinavia (ed. Gayer, R. A.), pp. 153–63. London: Graham & Trotman.CrossRefGoogle Scholar
Bruhn, R. L., Stern, C. R. & deWit, M. J. 1978. The bearing of new field and geochemical data on the origin and development of a Mesozoic volcano-tectonic rift zone and back-arc basin in southernmost South America. Earth and Planetary Science Letters 41, 3246.CrossRefGoogle Scholar
Cooper, M. A., Bliss, G. M., Ferriday, I. L. & Halls, C. 1979. The geology of the Sorjusdalen area, Nordland Norway. Norges Geologiske Undersøkelse 351, 3150.Google Scholar
Cowie, J. W. & Bassett, M. G. 1989. 1989 Global Stratigraphic Chart. ICS: IUGS. Supplement to Episodes 12 (2).Google Scholar
Dunning, G. R. & Krogh, T. E. 1985. Geochronology of ophiolites of the Newfoundland Appalachians. Canadian Journal of Earth Sciences 22, 1659–70.CrossRefGoogle Scholar
Dunning, G. R., Kean, B. F., Thurlow, J. G. & Swinden, H. S. 1987. Geochronology of the Buchans, Roberts Arm and Victoria Lake Groups and Mansfield Cove Complex Newfoundland. Canadian Journal of Earth Sciences 24, 1175–84.CrossRefGoogle Scholar
Dunning, G. R. & Pedersen, R. B. 1988. U/Pb ages of ophiolites and arc-related plutons of the Norwegian Caledonides: implications for the development of Iapetus. Contributions to Mineralogy and Petrology 98, 1223.CrossRefGoogle Scholar
Dunning, G. R., O'Brien, S. J., Colman-Sadd, S. P., Blackwood, R. F., Dickson, W. L., O'Neill, P. P. & Kroch, T. E. Silurian orogeny in the Newfoundland Appalachians. Journal of Geology (in press).Google Scholar
Furnes, H., Roberts, D., Sturt, B. A., Thon, A. & Gale, G. H. 1980. Ophiolite fragments in the Scandinavian Caledonides. Proceedings of the International Ophiolite Symposium, Nicosia 1979. 582600.Google Scholar
Furnes, H., Ryan, P. D., Grenne, T., Roberts, D., Sturt, B. A. & Prestvik, T. 1985. Geological and geochemical classification of the ophiolite fragments in the Scandinavian Caledonides. In The Caledonide Orogen–Scandinavia and Related Areas (eds. Gee, D. G. and Sturt, B. A.), pp. 657–70. New York: John Wiley & Sons.Google Scholar
Furnes, H., Skjerlie, K. P., Pedersen, R. B., Andersen, T. B., Stillman, C. J., Suthren, R., Tysseland, M. & Garmann, L. B. 1990. The solund–Stavfjord Ophiolite Complex and associated rocks, west Norwegian Caledonides: geology, geochemistry and tectonic environment. Geological Magazine 127, 209–24.CrossRefGoogle Scholar
Furnes, H., Pedersen, R. B. & Stillman, C. J. 1988. The Leka ophiolite Complex, central Norwegian Caledonides: field characteristics and geotectonic significance. Journal of the Geological Society, London 145, 401–12.CrossRefGoogle Scholar
Govindaraju, K. 1984. Compilation of working values and sample description for 170 international reference samples of mainly silicate rocks and minerals. Geostandards Newsletter 8, Special July Issue.CrossRefGoogle Scholar
Jacobsen, S. B. & Wasserburg, G. J. 1979. Nd and Sr isotopic study of the Bay of Islands ophiolite complex and the evolution of the source of mid-ocean ridge basalts. Journal of Geophysical Research 84, 7429–45.CrossRefGoogle Scholar
Kautsky, G. 1953. Der Geologische Bau des Sulitjelma–Salojaure–Gebietes in den nordskandinavischen Kaledoniden. Sveriges Geologiska Undersøkning, Series C, 528, 233 pp.Google Scholar
Kollung, S. 1989. Sulitjelmafeltet. Norges Geologiske Undersøkelse Skrifter 93, 47 pp.Google Scholar
Krogh, T. E. 1973. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta 37, 485–94.CrossRefGoogle Scholar
Krogh, T. E. 1982. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta 46, 637–49.CrossRefGoogle Scholar
Ludwig, K. R. 1980. Calculation of uncertainties of U-Pb isotope data. Earth and Planetary Science Letters 46, 212–20.CrossRefGoogle Scholar
Mason, R. 1971. The chemistry and structure of the Sulitjelma Gabbro. Norges Geologiske Undersøkelse 269, 108–41.Google Scholar
Mason, R. 1980. Temperature and pressure estimates in the contact aureole of the Sulitjelma gabbro, Norway: Implications for an ophiolite origin. Proceedings of the International Ophiolite Symposium, Nicosia 1979. 576–81.Google Scholar
Mason, R. 1981. A trondhjemite vein in the Sulitjelma Gabbro, Norway, and its implications for the age of the Sulitjelma Ophiolite. Geological Magazine 118, 525–31.CrossRefGoogle Scholar
Mearns, E. W. 1986. Sm-Nd ages for Norwegian garnet peridotite. Lithos 19, 269–78.CrossRefGoogle Scholar
Parrish, R. R. & Krogh, T. E. 1987. Synthesis and purification of 205Pb for U-Pb geochronology. In New developments and Applications in Isotope Geoscience. Chemical Geology (Isotope Geoscience Section) 66, 103110.CrossRefGoogle Scholar
Pedersen, R. B., Furnes, H. & Dunning, G. R. 1988. Some Norwegian ophiolite complexes reconsidered. Norges Geologiske Undersøkelse, Special Publications 3, 8085.Google Scholar
Pearce, J. A. 1980. Geochemical evidence for the genesis and eruptive setting of lavas from Tehyan ophiolites. Proceedings of the International Ophiolite Symposium, Nicosia 1979, 261–72.Google Scholar
Pedersen, R. B. & Hertogen, J. 1990. Magmatic evolution of the Karmøy Ophiolite Complex, SW Norway: Relationship between MORB-IAT-boniniticcalc-alkaline and alkaline magmatism. Contributions to Mineralogy and Petrology 104, 277–93.CrossRefGoogle Scholar
Richard, P., Shimizu, N. & Allegre, C. J. 1976. 143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth and Planetary Science Letters 31, 269–78.CrossRefGoogle Scholar
Saunders, A. D. & Tarney, J. 1984. Geochemical characteristics of basaltic volcanism within back-arc basins. In Marginal Basin Geology (eds Kokelaar, B. P. and Howells, M. F.), pp. 5976. Geological Society of London Special Publication no. 16.Google Scholar
Senior, A. & Andriessen, P. A. M. 1990. U/Pb and K/Ar determinations in the Upper and Uppermost Allochtons, Central Scandinavian Caledonides. Geonytt 1, p. 99 (abstract).Google Scholar
Senior, A. & Otten, M. T. 1985. The Artfjäll gabbro and its bearing on the evolution of the Storfjeet Nappe, central Swedish Caledonides. In The Caledonide Orogen–Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.), pp. 725–34. New York: John Wiley & Sons.Google Scholar
Shaw, H. F., Chen, J. H., Saleeby, J. B. & Wasserburg, G. J. 1987. Nd-Sr-Pb systematics and age of the Kings River ophiolite, California: implication for depeted mantle evolution. Contributions to Mineralogy and Petrology 96, 281–90.CrossRefGoogle Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Stephens, M. B. 1986. Terrane analysis at Sulitjelma, Upper Allochthon, Scandinavian Caledonides. Geologiska Føreningens i Stockholm Førhandlingar 108, 303–4.CrossRefGoogle Scholar
Stephens, M. B., Furnes, H., Robins, B. & Sturt, B. A. 1985. Igneous activity within the Scandinavian Caledonides. In The Caledonide Orogen–Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.), pp. 623–56. New York: John Wiley & Sons.Google Scholar
Stern, C. 1979. Open and closed system igneous fractionation within two Chilean ophiolites and the tectonic implication. Contributions to Mineralogy and Petrology 68, 243–58.CrossRefGoogle Scholar
Sturt, B. A. & Thon, A. 1978 a. A major early Caledonian igneous complex and a profound unconformity in the Lower Palaeozoic sequence of Karm, southwest Norway. Norsk Geologisk Tidsskrift 58, 221–28.Google Scholar
Sturt, B. A. & Thon, A. 1978 b. An ophiolite complex of probably Early Caledonian age discovered on Karmøy. Nature 275, 538.CrossRefGoogle Scholar
Sturt, B. A., Roberts, D. & Furnes, H. 1984. A conspectus of Scandinavian Caledonian ophiolites. In Ophiolites and Oceanic Lithosphere (eds Gass, I. G., Lippard, S. J. and Shelton, A. W.), pp. 381–91. Geological Society of London, Special Publication no. 13.Google Scholar
Suen, C. J., Frey, F. A. & Malpas, J. 1979. Bay of Islands ophiolite suite, Newfoundland: petrologic and geochemical characteristics with emphasis on rare earth element geochemistry. Earth and Planetary Science Letters 45, 337–48.CrossRefGoogle Scholar
Sun, S. 1980. Lead isotope study of young volcanic rocks from mid-ocean ridges, ocean island and island arcs. Philosophical Transactions of the Royal Society of London Series A 297, 409–55.Google Scholar
Sun, S. & Nesbitt, R. W. 1978. Geochemical regularities and genetic significance of ophiolitic basalts. Geology 6, 689–93.2.0.CO;2>CrossRefGoogle Scholar
Tarney, J., Saunders, A. D., Mattey, D. P., Wood, D. A. & Marsh, N. G. 1981. Geochemical aspects of back-arc spreading in the Scotia Sea and Western Pacific. Philosophical Transactions of the Royal Society of London Series A 300, 263–85.Google Scholar
Thon, A. 1985. Late Ordovician and Early Silurian cover sequences to the west Norwegian ophiolite fragments: stratigraphy and structural evolution. In The Caledonide Orogen – Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.), pp. 407–16. New York: John Wiley & Sons.Google Scholar
Trettin, H. P., Loveridge, W. D. & Sullivan, R. W. 1982. U-Pb ages on zircon from the M'Clintock West massif and the Markham Fjord Pluton, northernmost Ellesmere Island. Geological Survey of Canada, Paper 82-lc, pp. 161–6.Google Scholar
Tucker, R. D., Boyd, R. & Barnes, S.-J. (in press) A U-Pb zircon age for the Råna intrusion, N. Norway: Implication for basic magmatism in the Scandinavian Caledonides at the Ordovician-Silurian boundary. Norsk Geologisk Tidskrift.Google Scholar
Weaver, S. D., Saunders, A. D., Pankhurst, P. J. & Tarney, J. 1979. A geochemical study of magmatism associated with the initial stages of back-arc spreading. Contributions to Mineralogy and Petrology 86, 151–69.CrossRefGoogle Scholar
Whalen, J. B., Currie, K. L. & van Breeman, O. 1987. Episodic Ordovician–Silurian plutonism in the Topsails igneous terrane, western Newfoundland. Transactions of the Royal Society of Edinburgh: Earth Sciences 78, 1728.CrossRefGoogle Scholar
Wilson, M. R. 1971. The timing of orogenic activity in the Bodø Sulitjelma tract. Norges Geologiske Undersøkelse 269, 184–90.Google Scholar
Wilson, J. R. 1985. The synorogenic Fongen-Hyllingen layered basic complex, Trondheim region, Norway. In The Caledonide Orogen – Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.), pp. 717–24. New York: John Wiley & Sons.Google Scholar
Wilson, J. R., Hansen, B. T. & Pedersen, S. 1983. Zircon U-Pb evidence for the age of the Fongen-Hyllingen complex, Trondheim region, Norway. Geologiska Føreningens i Stockholm Førhandlingar 105, 6870.CrossRefGoogle Scholar
Wood, D. A., Tarney, J., Varet, J., Saunders, A. D., Bougault, H., Joron, J. L., Treuil, M. & Cann, J. R. 1979. Geochemistry of basalts drilled in the North Atlantic by IPOD LEG 49: Implication for mantle heterogeneity. Earth and Planetary Science Letters 42, 7797.CrossRefGoogle Scholar