Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T10:35:50.964Z Has data issue: false hasContentIssue false

Time–space relationships among structural and metamorphic aureoles related to granite emplacement: a case study from the Serre Massif (southern Italy)

Published online by Cambridge University Press:  16 November 2012

VINCENZO FESTA*
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari ‘Aldo Moro’, Via E. Orabona 4, 70125 Bari, Italy
ALFREDO CAGGIANELLI
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari ‘Aldo Moro’, Via E. Orabona 4, 70125 Bari, Italy
ANTONIO LANGONE
Affiliation:
CNR-IGG (Consiglio Nazionale della Ricerche–Istituto di Geoscienze e Georisorse) Pavia, Via Ferrata 1, 27100 Pavia, Italy
GIACOMO PROSSER
Affiliation:
Dipartimento di Scienze, Università degli Studi della Basilicata, Campus di Macchia Romana, 85100 Potenza, Italy
*
Author for correspondence: vincenzo.festa@uniba.it

Abstract

Tectonic and thermal perturbations, related to emplacement of granodiorite in the upper continental crust, have been investigated in the late-Hercynian basement exposed in southern Calabria (Italy). Here, the structural aureole is marked by the presence of a major rim fold adjacent to the intrusive contact for a length of at least 20 km. Geometrical analysis of the structural aureole and related foliations, lineations and crenulations reveals that the perturbed zone is at least 3000 m wide and characterized by an open synform trending nearly parallel to the intrusive contact. This pattern is compatible with a laccolith-like mode of magma emplacement, related to the accretion of the pluton that shouldered weak phyllitic and slaty wall rocks. The metamorphic aureole, about 1800 m wide, is characterized by biotite, cordierite and andalusite that appear sequentially in spotted schists and hornfelses approaching the intrusive contact. The peak assemblage equilibrated between 535 and 590°C at pressures between 175 and 200 MPa, confirmed by Al-in-hornblende barometry on granodiorite. Microstructural analysis allowed the inference of a time lag between the thermal and tectonic perturbations. With the aid of thermal modelling it was possible to quantify the time required to reach the peak temperature at a distance from the intrusive contact where cordierite spots and andalusite porphyroblasts clearly overprint crenulations. This estimate represents the time limit to accomplish deformation in the inner portion of the aureole and thus indicates a minimum strain rate of 4 × 10−14 s−1 within the country rocks during granodiorite intrusion.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acquafredda, P., Fornelli, A., Micheletti, F. & Piccarreta, G. 2003. The abundance of 51 elements and petrovolumetric models of the Calabria crust: Curinga-Stilo area (site 6). In The Abundance of 55 Elements and Petrovolumetric Models of the Crust in 9 Type Areas From the Crystalline Basements of Italy, With Some Geophysical and Petrophysical Data (ed. Sassi, F. P.), pp. 263–88. Accademia Nazionale delle Scienze detta dei Quaranta no. 32.Google Scholar
Acquafredda, P., Lorenzoni, S., Minzoni, N. & Zanettin-Lorenzoni, E. 1987. The Paleozoic sequence in the Stilo-Bivongi area (Central Calabria). Memorie di Scienze Geologiche 39, 117–27.Google Scholar
Acquafredda, P., Lorenzoni, S. & Zanettin-Lorenzoni, E. 1994. Paleozoic sequences and evolution of the Calabrian-Peloritan Arc (Southern Italy). Terra Nova 6, 582–94.Google Scholar
Allmendinger, R. W. 2004. Stereonet version 6.3.2 X – Orientation data analysis computer code. Absoft Corporation.Google Scholar
Anderson, J. L. & Smith, D. R. 1995. The effects of temperature and oxygen fugacity on the Al-in-hornblende barometer. American Mineralogist 80, 549–59.Google Scholar
Angì, G., Cirrincione, R., Fazio, E., Fiannacca, P., Ortolano, G. & Pezzino, A. 2010. Metamorphic evolution of preserved Hercynian crustal section in the Serre Massif (Calabria–Peloritani orogen, southern Italy). Lithos 115, 237–62.CrossRefGoogle Scholar
Annen, C. 2011. Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism-volcanism relationships. Tectonophysics 500, 310.Google Scholar
Borsi, S., Hieke Merlin, O., Lorenzoni, S., Paglionico, A. & Zanettin-Lorenzoni, E. 1976. Stilo unit and dioritic-kinzigitic unit in Le Serre (Calabria, Italy). Bollettino della Società Geologica Italiana 95, 219–44.Google Scholar
Bouillin, J. P., Majesté-Menjoulas, C., Baudelot, S., Cygan, C. & Fournier-Vinas, C. 1987. Les formations paléozoiques de l'Arc Calabro-Peloritain dans leur cadre structural. Bollettino della Società Geologica Italiana 106, 683–9.Google Scholar
Caggianelli, A. & Prosser, G. 2002. Modelling the thermal perturbation of the continental crust after intraplating of thick granitoid sheets: a comparison with the crustal sections in Calabria (Italy). Geological Magazine 139, 699706.Google Scholar
Caggianelli, A., Prosser, G. & Rottura, A. 2000. Thermal history vs. fabric anisotropy in granitoids emplaced ad different crustal levels: an example from Calabria, southern Italy. Terra Nova 12, 109–16.Google Scholar
Colonna, V., Lorenzoni, S. & Zanettin-Lorenzoni, E. 1973. Sull'esistenza di due complessi metamorfici lungo il bordo sudorientale del massiccio granitico delle Serre (Calabria). Bollettino della Società Geologica Italiana 92, 801–30.Google Scholar
Corry, C. E. 1988. Laccoliths; mechanics of emplacement and growth. Geological Society of America Special Paper 220, 110 pp.Google Scholar
Cruden, A. R. 1988. Deformation around a rising diapir modeled by creeping flow past a sphere. Tectonics 7, 1091–101.CrossRefGoogle Scholar
Cruden, A. R. 1990. Flow and fabric development during the diapiric rise of magma. Journal of Geology 98, 681–98.CrossRefGoogle Scholar
Cruden, A. R. 1998. On the emplacement of tabular granites. Journal of the Geological Society, London 155, 853–62.Google Scholar
Cruden, A. R. 2006. Emplacement and growth of plutons: implications for rates of melting and mass transfer in continental crust. In Evolution and Differentiation of the Continental Crust (eds Brown, M. & Rushmer, T.), pp. 455519. Cambridge: Cambridge University Press.Google Scholar
Cruden, A. R., Sjöström, H. & Aaro, S. 1999. Structure and geophysics of the Gåsborn granite, Central Sweden: an example of fracture-fed asymmetric pluton emplacement. In Understanding Granites: Integrating New and Classical Techniques (eds Castro, A., Fernandez, C. & Vigneresse, J. L.), pp. 141–60. Geological Society of London, Special Publication no. 168.Google Scholar
Dixon, J. M. 1975. Finite strain and progressive deformation in models of diapiric structures. Tectonophysics 28, 89124.CrossRefGoogle Scholar
Festa, V., Di Battista, P., Caggianelli, A. & Liotta, D. 2003. Exhumation and tilting of the late-Hercynian continental crust in the Serre Massif (Southern Calabria, Italy). Bollettino della Società Geologica Italiana, Volume Speciale 2, 7988.Google Scholar
Festa, V., Fornelli, A., Paglionico, A., Pascazio, A., Piccarreta, G. & Spiess, R. 2012. Asynchronous extension of the late-Hercynian crust in Calabria. Tectonophysics 518–521, 2943.Google Scholar
Festa, V., Messina, A., Paglionico, A., Piccarreta, G. & Rottura, A. 2004. Pre-Triassic history recorded in the Calabria–Peloritani segment of the Alpine chain, southern Italy. An overview. Periodico di Mineralogia 73, 5771.Google Scholar
Fornelli, A., Caggianelli, A., Del Moro, A., Bargossi, G. M., Paglionico, A., Piccarreta, G. & Rottura, A. 1994. Petrology and evolution of the Central Serre Granitoids (southern Calabria – Italy). Periodico di Mineralogia 63, 5370.Google Scholar
Franzini, M., Leoni, L. & Saitta, M. 1975. Revisione di una metodologia analitica per fluorescenza-X basata sulla correzione degli effetti di matrice. Rendiconti Società Italiana di Mineralogia e Petrologia 31, 365–78.Google Scholar
Gilbert, G. K. 1877. Report on the Geology of the Henry Mountains. Washington D.C.: U.S. Geographical and Geological Survey of the Rocky Mountain Region, 160 pp.Google Scholar
Glazner, A. F. & Miller, D. M. 1997. Late-stage sinking of plutons. Geology 25, 1099–102.Google Scholar
Hammarstom, J. M. & Zen, E.-A. N. 1986. Aluminium in hornblende: an empirical igneous geobarometer. American Mineralogist 71, 1297–313.Google Scholar
He, B., Xu, Y.-G. & Paterson, S. 2009. Magmatic diapirism of the Fangshan pluton, southwest of Beijing, China. Journal of Structural Geology 31, 615–26.Google Scholar
Hippertt, J. & Davis, B. 2000. Dome emplacement and formation of kilometre-scale synclines in a granite-greenstone terrain (Quadrilátero Ferrífero, southeastern Brazil). Precambrian Research 102, 99121.CrossRefGoogle Scholar
Holdaway, M. J. 1971. Stability of andalusite and the aluminium silicate phase diagram. American Journal of Science 271, 97131.Google Scholar
Holland, T. & Blundy, J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 116, 433–47.Google Scholar
Jackson, M. D. & Pollard, D. D. 1988. The laccolith-stock controversy: new results from the southern Henry mountains, Utah. Geological Society of America Bulletin 100, 117–39.Google Scholar
Johnson, S. E., Albertz, M. & Paterson, S. R. 2001. Growth rates of dike-fed plutons: are they compatible with observations in the middle and upper crust? Geology 29, 727–30.Google Scholar
Lagarde, J. L., Ait Omar, S. & Roddaz, B. 1990. Structural characteristics of granitic plutons emplaced during weak regional deformation: examples from late Carboniferous plutons, Morocco. Journal of Structural Geology 12, 805–21.Google Scholar
Marchetti, M. P., Sargent, G. E. G., Bayliss, D. D., Davies, R. G., Chiarini, G., Gioria, C. & Manmana, A. 1967. Carta Geologica della Calabria, Foglio 246 II SO Gioiosa Ionica, scale 1:25,000, 1 sheet. Cassa per il Mezzogiorno, Servizio Bonifiche.Google Scholar
Marko, W. T. & Yoshinobu, A. S. 2011. Using restored cross sections to evaluate magma emplacement, White Horse Mountains, Eastern Nevada, U.S.A. Tectonophysics 500, 98111.Google Scholar
Miller, R. B. & Paterson, S. R. 2001. Influence of lithological heterogeneity, mechanical anisotropy, and magmatism on the rheology of an arc, North Cascades, Washington. Tectonophysics 342, 351–70.Google Scholar
Morgan, S. S., Law, R. D. & Nyman, M. W. 1998. Laccolith-like emplacement model for the Papoose Flat pluton based on porphyroblast matrix analysis. Geological Society of America Bulletin 110, 96110.2.3.CO;2>CrossRefGoogle Scholar
Paterson, S. R. & Farris, D. W. 2008. Downward host rock transport and the formation of rim monoclines during the emplacement of Cordilleran batholiths. Transactions of the Royal Society of Edinburgh: Earth Sciences 97, 397413.Google Scholar
Paterson, S. R., Fowler, T. K. Jr & Miller, R. B. 1996. Pluton emplacement in arcs: a crustal-scale exchange process. Geological Society of America Special Papers 315, 115–23.Google Scholar
Paterson, S. R. & Tobisch, O. T. 1992. Rates of processes in magmatic arcs: implications for the timing and nature of pluton emplacement and wall rock deformation. Journal of Structural Geology 14, 291300.Google Scholar
Paterson, S. R., Vernon, R. H. & Fowler, T. K. Jr. 1991. Aureole tectonics. In Contact Metamorphism (ed. Kerrick, D. M.), pp. 673722. Reviews in Mineralogy 26. Washington: Mineralogical Society of America.Google Scholar
Pattison, D. R. M., Spear, F. S., Debuhr, C. L., Cheney, J. T. & Guidotti, C. V. 2002. Thermodynamic modelling of the reaction muscovite + cordierite→Al2SiO5 + biotite +quartz + H2O: constraints from natural assemblages and implications for the metapelitic petrogenetic grid. Journal of Metamorphic Geology 20, 99108.Google Scholar
Pattison, D. R. M. & Vogl, J. J. 2005. Contrasting sequences of metapelitic mineral-assemblages in the aureole of the tilted Nelson Batholith, British Columbia: implications for phase equilibria and pressure determination in Andalusite-Sillimanite-Type settings. The Canadian Mineralogist 43, 5188.CrossRefGoogle Scholar
Pitcher, W. S. 1993. The Nature and Origin of Granite. London: Blackie Academic and Professional, 321 pp.Google Scholar
Pollard, D. & Fletcher, R. C. 2005. Fundametals of Structural Geology. Cambridge: Cambridge University Press, 500 pp.Google Scholar
Ramberg, H. 1970. Model studies in relation to intrusion of plutonic bodies. In Mechanism of Igneous Intrusion (eds Newall, G. & Rast, N.), pp. 261–86. Geological Journal Special Issue no. 2. Liverpool: The Seel House Press.Google Scholar
Saint Blanquat, M., Habert, G., Horsman, E., Morgan, S. S., Tikoff, B., Launeau, P. & Gleizes, G. 2006. Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: the Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428, 131.Google Scholar
Schenk, V. 1980. U–Pb and Rb–Sr radiometric dates and their correlation with metamorphic events in the granulite-facies basement of the Serre, Southern Calabria (Italy). Contributions to Mineralogy and Petrology 73, 2338.Google Scholar
Schenk, V. 1989. P-T-t path of the lower crust in the Hercynian fold belt of Southern Calabria. In Evolution of Metamorphic Belts (eds Daly, J. S., Cliff, R. A. & Yardley, B. W. D.), pp. 337–42. Geological Society of London, Special Publication no. 43.Google Scholar
Schmidt, M. W. & Thompson, A. B. 1996. Epidote in calc-alkaline magmas: an experimental study of stability, phase relationships and the role of epidote in the magmatic evolution. American Mineralogist 81, 462–74.Google Scholar
Schwerdtner, W. M. 1990. Structural tests of diapir hypotheses in Archean crust of Ontario. Canadian Journal of Earth Sciences 27, 387402.Google Scholar
Siivola, J. & Schmid, R. 2007. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: List of Mineral Abbreviations. Web version 01.02.07. (http://www.bgs.ac.uk/scmr/docs/papers/paper_12.pdf) IUGS Commission on the Systematics in Petrology.Google Scholar
Spear, F. S. 1993. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Washington, DC: Mineralogical Society of America.Google Scholar
Spear, F. S., Pattison, D. R. M. & Cheney, J. T. 2000. Multiple thermodynamic data sets supported by Program Gibbs. Available at http://ees2.geo.rpi.edu/MetaPetaRen/Software/GibbsWeb/Gibbs.html (accessed 5 January 2012).Google Scholar
Tikoff, B., de Saint Blanquat, M. & Teyssier, C. 1999. Translation and the resolution of the pluton space problem. Journal of Structural Geology 21, 1109–17.Google Scholar
Yardley, B. W. D. 1989. An Introduction to Metamorphic Petrology. Longman Earth Science Series. Harlow, Essex: Longman Scientific and Technical, 248 pp.Google Scholar