Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-21T02:09:41.259Z Has data issue: false hasContentIssue false

Syntectonic alluvial fan sedimentation, southern Pyrenees

Published online by Cambridge University Press:  01 May 2009

G. J. Nichols
Affiliation:
Department of Geological Sciences, Liverpool University, P.O. Box 147, Liverpool, L69 3BX.

Abstract

The Aguero fanglomerate body developed in late Oligocene to early Miocene time at the northern margin of the Ebro Basin where the emergent southern Pyrenean thrust front created a topographic high. Tectonic activity in the thrust belt strongly influenced the sequences and structures within the fan deposits. The fan deposits display an initial coarsening-up sequence. Intraformational unconformities subdivide the proximal sediments into a series of wedges. These result from a continued uplift along the thrust front during the initial stages of fan development. A major intraformational unconformity marks the top of this sequence and the start of a fining-up sequence. Further tectonic activity in the thrust front is indicated by a syn-depositional synclinal fold which decreases in amplitude up sequence. Rejuvenation of fan sedimentation to form a second coarsening-up sequence reflects renewed activity in the thrust front. This second sedimentation event resulted in a plus 200 m thickness of massive conglomerates. The geographical limits of fan sedimentation can be determined because the fan deposits are lithologically distinct from the other Ebro Basin molasse in the area. The area of the drainage basin of the fan can also be estimated by consideration of the clast types present in the fan deposits. The fan and drainage basin areas are estimated to be 6 km2 and 10 km2 respectively.

Type
Articles
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anadon, P., Cabrera, L., Colombo, M., Marzo, M. & Riba, O. 1986. Syntectonic intraformational unconformities in alluvial fan deposits, eastern Ebro Basin margin (NE Spain). In Foreland Basins (eds. Allen, P. A., Homewood, P.). Special Publication of the International Association of Sedimentologists, no. 8 (in press).Google Scholar
Bluck, B. J. 1964. Sedimentation on alluvial fans in southern Nevada. Journal of Sedimentary Petrology 34, 395400.Google Scholar
Bull, W. B. 1962. Relations of alluvial fan size and slope to drainage basin size and lithology in western Fresno County, California. Professional Papers United States Geological Survey 450B, 51–3.Google Scholar
Bull, W. B. 1972. Recognition of alluvial fan deposits in the stratigraphic record. Special Publication Society of Economic Palaeontologists and Mineralogists 16, 6383.Google Scholar
Camara, P. & Klimowitz, J. 1985. Interpretacion geodinamica de la vertiente centro-occidental surpirenaica (Cuencas Jaca–Tremp). Estudios Geologicos 41, 56.CrossRefGoogle Scholar
Crusafont, M. & Pons, J. M. 1969. Nuevos datos sobre el Aquitaniense de norte de la provincia de Huesca. Acta Geologica Hispanica 4, 124–5.Google Scholar
Denny, C. S. 1965. Alluvial fans in the Death Valley region, California and Nevada. Professional Papers United States Geological Survey 466, p. 62.Google Scholar
Deramond, J., Fischer, M., Hossack, J., Labaume, P., Seguret, M., Soula, J.-C., Viallard, P. & Williams, G. D. 1984. Field guide of conference trip to the Pyrenees. Chevauchement et deformation conference, Toulouse, 1984, 128.Google Scholar
Hardie, L. A. 1968. The origin of the Recent non-marine evaporite deposit of Saline Valley, Inyo County, California. Geochimica et Cosmochimica Acta 32, 1279–301.CrossRefGoogle Scholar
Heward, A. P. 1978. Alluvial fan sequence and megasequence models, with examples from the Westphalian D–Stephanian B coalfields, northern Spain. In Fluvial Sedimentology (ed. Miall, A. D.), pp. 699702. Canadian Society of Petroleum Geologists Memoir, no. 5.Google Scholar
Hirst, J. P. P. & Nichols, G. J. 1986. Thrust tectonic controls on Miocene alluvial distribution patterns, southern Pyrenees. In Foreland Basins (ed. Allen, P. A., Homewood, P.), pp. 153–64. Special Publication International Association of Sedimentologists, no. 8 (in press).Google Scholar
Hooke, R. LeB. 1968. Steady state relationships on arid region alluvial fans in closed basins. American Journal of Science 266, 609629.CrossRefGoogle Scholar
Miall, A. D. 1978. Lithofacies types and vertical profile models in braided river deposits; a summary. In Fluvial Sedimentology (ed. Miall, A. D.), pp. 597604. Canadian Society of Petroleum Geologists Memoir, no. 5.Google Scholar
Puigdefabregas, C. 1975. La sedimentation molasica en la cuenca de Jaca. Monografias del Instituto de Estudios Pirenaicos 104, 188.Google Scholar
Puigdefabregas, C. & Soler, M. 1973. Estructuras de las Sierras Exteriores Piernaicos en la corte del Rio Gallego (provincia de Huesca). Pireneos 109, 515.Google Scholar
Reille, J.-L. 1971. Les relations entre tectorogenèse et sedimentation sur le versant sud des Pyrénées centrales (d'après l'étude de formations tertiaires essentiellement continentales). Thèse Université de Montpellier C.N.R.S.: A.O. 4916, pp. 330.Google Scholar
Riba, O. 1976. Syntectonic unconformities of the Alto Cardener, Spanish Pyrenees: a genetic interpretation. Sedimentary Geology 15, 213–33.CrossRefGoogle Scholar