Skip to main content Accessibility help

Provenance of Paleocene–Eocene red beds from NE Iraq: constraints from framework petrography



The red-bed deposits in northern Iraq are situated in an active foreland basin adjacent to the Zagros Orogenic Belt, bound to the north by the Iranian plate thrust over the edge of the Arabian plate. The red-bed successions are composed of alternating red and brown silty mudstones, purplish red calcareous siltstone, fine- to coarse-grained pebbly sandstone and conglomerate. The red beds in the current study can be divided into four parts showing a trend of upward coarsening with fine-grained deposits at the top. A detailed petrographic study was carried out on the sandstone units. The clastic rocks consist mainly of calcite cemented litharenite with rock fragments (volcanic, metamorphic and sedimentary), quartz and minor feldspar. The petrographic components reflect the tectonic system in the source area, laterally ranging from a mixed orogenic and magmatic arc in Mawat–Chwarta area to recycled orogenic material rich in sedimentary rock fragments in the Qandel area. The Cretaceous–Palaeogene foreland basin of northern Iraq formed to the southwest of the Zagros Suture Zone and the Sanandaj–Sirjan Zone of western Iran. During Palaeogene time deposition of the red beds was caused by renewed shortening in the thrust sheets overlying the Arabian margin with uplift of radiolarites (Qulqula Formation), resulting in an influx of radiolarian debris in addition to continuing ophiolitic detritus. Mixed sources, including metamorphic, volcanic and sedimentary terranes, were present during deposition of the upper part of the red beds.


Corresponding author

Author for correspondence:


Hide All
Abanda, P. A. & Hannigan, R. E. 2006. Effect of diagenesis on trace element partitioning in shales. Chemical Geology 230, 4259.
Abdel-Kireem, M. R. 1983. A study of the palaeoecology and bathymetry of the foraminiferal assemblages of the Shiranish Formation (Upper Cretaceous), northeastern Iraq. Palaeogeography, Palaeoclimatology, Palaeoecology 43, 169–80.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B. & Wortel, R. 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine 148, 692725.
Alavi, M. 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–38.
Alavi, M. 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science 304, 120.
Al-Mehaidi, H. M. 1975. Tertiary Nappe in Mawat Range, NE Iraq. Journal of Geological Soceity of Iraq 8, 3144.
Al-Qayim, B. 1993. Petrofacies analysis and tectonic evolution of Zagroside flysch suites from northeastern Iraq. In Petrology of Sandstones in Relation to Tectonics (eds Kumon, A. C. & Kus, A. A.), pp. 3334. VSP BV, The Netherlands.
Al-Rawi, Y. 1980. Petrology and Sedimentology of the Gercus red beds Formation (Eocene), Northeastern Iraq. Iraq Journal of Science 21, 132–88.
Andersen, C. B. 1995. Provenance of mudstones from two Ordovician foreland basins in the Appalachians. In Stratigraphic Sequences in Foreland Basins (eds Dorobek, S. L. & Rosss, G. M.), pp. 5363. Society for Sedimentary Geology, Special Publications 52.
Asiedu, D. K., Asiedu, D. K., Suzuki, S., Nogami, K. & Shibata, T. 2000. Geochemistry of Lower Cretaceous sediments, Inner Zone of Southwest Japan: constraints on provenance and tectonic environment. Geochemical Journal 34, 155–73.
Basu, A. 1975. Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Research 45, 873–82.
Basu, A. 1976. Petrology of Holocene fluvial sand derived from plutonic source rocks; implications to paleoclimatic interpretation. Journal of Sedimentary Research 46, 694709.
Bellen, V. R. C., Bellen, V. R. C., Dunnington, H. V., Wetzel, R. & Morton, D. 1959. Lexique Stratigraphique Interntional. Asie, Iraq, 333 pp.
Bjorlykke, K. 1989. Sedimentology and Petroleum Geology. Springer Verlag, Berlin, 363 pp.
Blatt, H. 1967 a. Original characteristics of clastic quartz grains. Journal of Sedimentary Research 37, 401–24.
Blatt, H. 1967 b. Provenance determinations and recycling of sediments. Journal of Sedimentary Research 37, 10311044.
Blatt, H. & Christie, J. M. 1963. Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks. Journal of Sedimentary Research 33, 559–79.
Blatt, H., Middleton, G. & Murray, R. 1972. Origin of Sedimentary Rocks. Prentice–Hall, New Jersey, 634 pp.
Boggs, S. J. 1968. Experimental study of rock fragments. Journal of Sedimentary Petrology 38, 1326–39.
Boggs, S. J. 2009. Petrology of Sedimentary Rocks, 2nd edition. Cambridge: Cambridge University Press, 599 pp.
Bokman, J. W. 1955. Sandstone classification-relation to composition and texture. Journal of Sedimentary Research 25, 201206.
Buday, T. 1980. Regional Geology of Iraq. In Stratigraphy (eds Kassab, I. I. M. & Jassims, S. Z.), 445. Geological Society of Iraq, Baghdad, Geological Survey Mining 1.
Cameron, K. L. & Blatt, H. 1971. Durabilities of sand size schist and ‘volcanic’ rock fragments during fluvial transport, Elk creek, Black Hills, South Dakota. Journal of Sedimentary Research 41, 565–76.
Condie, K. C., Lee, D. & Farmer, G. L. 2001. Tectonic setting and provenance of the Neoproterozoic Uinta Mountain and Big Cottonwood groups, northern Utah: constraints from geochemistry, Nd isotopes, and detrital modes. Sedimentary Geology 141, 443–64.
Critelli, S. & Ingersoll, R. V. 1995. Interpretation of neovolcanic versus palaeovolcanic sand grains: an example from Miocene deep-marine sandstone of the Topanga Group (southern California). Sedimentology 42, 783804.
Critelli, S., Marsaglia, K. M. & Busby, C. J. 2002. Tectonic history of a Jurassic backarc-basin sequence (the Gran Cañon Formation, Cedros Island, Mexico), based on compositional modes of tuffaceous deposits. Geological Society of America Bulletin 114, 515–27.
Critelli, S., Mongelli, G., Perri, F., Martín-Algarra, A., Martín-Martín, M., Perrone, V., Dominici, R., Sonnino, M. & Zaghloul, M. N. 2008. Compositional and geochemical signatures for the sedimentary evolution of the Middle Triassic–Lower Jurassic continental redbeds from western-central Mediterranean Alpine Chains. Journal of Geology 116, 375–86.
Dickinson, W. R. 1970. Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Research 40, 695707.
Dickinson, W. R. 1985. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites (ed. Zuffa, G. G.), pp. 333–61. D. Reidel, Dordrecht, NATO Advanced Study Institute Series 148.
Dickinson, W. R. & Rich, E. I. 1972. Petrologic intervals and petrofacies in the Great Valley Sequence, Sacramento Valley, California. Geological Society of America Bulletin 83, 3007–24.
Dickinson, W. R. & Selley, D. R. 1979. Structure and stratigraphic of fore-arc reagions. American Association of Petroleum Geologists Bulletin 63, 231.
Dorsey, R. J. 1988. Provenance evolution and unroofing history of a modern arc-continent collision; evidence from petrography of Plio-Pleistocene sandstones, eastern Taiwan. Journal of Sedimentary Research 58, 208–18.
Feniak, M. W. 1944. Grain sizes and shapes of various minerals in igneous rocks. American Mineralogist 29, 415–21.
Folk, R. L. 1962. Petrography and origin of the Silurian Rochester and McKenzie Shales, Morgan County, West Virginia. Journal of Sedimentary Research 32, 539–78.
Folk, R. L. 1980. Petrology of Sedimentary Rocks. Hemphill's, Austin, Texas, 154 pp.
Garzanti, E., Critelli, S. & Ingersoll, R. V. 1996. Paleogeographic and paleotectonic evolution of the Himalayan Range as reflected by detrital modes of Tertiary sandstones and modern sands (Indus transect, India and Pakistan). Geological Society of America Bulletin 108, 631642.
Garzanti, E., Doglioni, C., Vezzoli, G. & Andò, S. 2007. Orogenic belts and orogenic sediment provenance. Journal of Geology 115, 315–34.
Helmold, K. P. 1985. The effect of grain size on detrital modes; a test of the Gazzi-Dickinson point-counting method; discussion and reply. Journal of Sedimentary Research 55, 618–21.
Hulka, C. & Heubeck, C. 2010. Composition and provenance history of Late Cenozoic sediments in southeastern Bolivia: implications for Chaco Foreland Basin evolution and Andean uplift. Journal of Sedimentary Research 80, 288–99.
Ingersoll, R. V. & Suczek, C. A. 1979. Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. Journal of Sedimentary Research 49, 1217–28.
Jargal, L. & Lee, Y. I. 2006. Detrital modes of the East Gobi Basin (Ondor-Bogd area) sandstones (Late Jurassic–Early Cretaceous) in southeastern Mongolia and their geological implications. Geosciences Journal 10, 116.
Karim, K. H., Koyi, H., Baziany, M. M. & Hessami, K. 2011. Significance of angular unconformities between Cretaceous and Tertiary strata in the northwestern segment of the Zagros fold-thrust belt, Kurdistan region, NE Iraq. Geological Magazine 148, 925–39.
Krynine, P. D. 1940. Petrology and genesis of the Third Bradford Sand. Pennsylvania State College Bulletin 29, 134 pp.
Lee, Y. I. & Kim, J. Y. 2005. Provenance of the Hayang Group (Early Cretaceous) in the Yeongyang Subbasin, SE Korea and its bearing on the Cretaceous palaeogeography of SW Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 228, 278–95.
Le Pera, E., Josè, A., Salvatore, C. & Salvatore, T. 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): implications for provenance studies. Sedimentology 48, 357–78.
Mack, G. H., Thomas, W. A. & Horsey, C. A. 1983. Composition of Carboniferous sandstones and tectonic framework of southern Appalachian-Ouachita orogen. Journal of Sedimentary Research 53, 931–46.
Milliken, K. L. 1988. Loss of provenance information through subsurface diagenesis in Plio-Pleistocene sandstones, N Gulf of Mexico. Journal of Sedimentary Petrology 58, 9921002.
Milliman, J. D. & Meade, R. H. 1983. World-wide delivery of river sediment to the oceans. Journal of Geology 91, 121.
Mousinho De Meis, M. R. & Amador, E. D. S. 1974. Note on weathered arkosic beds. Journal of Sedimentary Research 44, 727–37.
Nichols, G. J. 2004. Sedimentology and Stratigraphy. Hoboken, NJ: Wiley, 355 pp.
Perri, F., Critelli, S., Martín-Algarra, A., Martín-Martín, A., Perrone, V., Mongelli, G. & Zattin, M. 2013. Triassic redbeds in the Malaguide Complex (Betic Cordillera - Spain): petrography, geochemistry and geodynamic implications. Earth-Science Reviews 117, 128.
Pettijohn, F. J., Potter, P. & Siever, R. 1972. Sand and Sandstone. Springer-Verlag, New York, 619 pp.
Scholle, P. A. 1979. A Color Illustrated Guide to Constituent, Texture, Cements, and Porosities of Sandstone and Associaited Rocks. American Assosiation of Petrolum Geologists, Memoir 28, 201.
Schumacher, J. C. 1988. Stratigraphy and geochemistry of the Ammonoosuc Volcanics, central Massachusetts and southwestern New Hampshire. American Journal of Science 288, 619–63.
Smyth, H. R., Hall, R. & Nichols, G. J. 2008. Significant volcanic contribution to some quartz-rich sandstones, East Java, Indonesia. Journal of Sedimentary Research 78, 335–56.
Thoreau, H. D. 1982. Conglomerates and sandstones: composition. In Sedimentary Petrology (ed. Blatt, H.), 564 pp. H. F. Freeman, New York.
White, N. M., Pringle, M., Garzanti, E., Bickle, M., Najman, Y., Chapman, H. & Friend, P. 2002. Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth and Planetary Science Letters 195, 2944.
Young, S. W. 1976. Petrographic textures of detrital polycrystalline quartz as an aid to interpreting crystalline source rocks. Journal of Sedimentary Research 46, 595603.
Zaghloul, M. N., Critelli, S., Perri, F., Mongelli, G., Perroni, V., Sonnino, M., Tucker, M., Aiello, M. & Ventimiglia, C. 2010. Depositional systems, composition and geochemistry of Triassic rifted-continental margin redbeds of the Internal Rift Chain, Morocco. Sedimentology 57, 312–50.


Type Description Title
Supplementary materials

Hassan Supplementary Material
Figures and Tables

 Word (9.0 MB)
9.0 MB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed