Skip to main content Accessibility help

Phosphatized soft tissues in bivalves from the Portland Roach of Dorset (Upper Jurassic)

  • Philip R. Wilby (a1) and Martin A. Whyte (a2)


Phosphatized soft tissues are preserved in abundance in the trigoniids (Bivalvia) Laevitrigonia gibbosa and Myophorella incurva from the Portland Roach (Upper Jurassic) of Dorset. Cellular structures are preserved and fossilization is almost exclusively the result of a dense coating of mineralized microbes. Phosphatized soft tissues are restricted entirely to those trigoniids whose valves remained tightly closed after death. Only in these specimens was sufficient phosphorus concentrated by the decay of their most ‘labile’ soft tissues to trigger the precipitation of apatite in and around microbes infesting their more ‘refractory’ soft tissues. The absence of fossilized soft tissues in the rest of the fauna implies that phosphatization was very taxon-specific.



Hide All
Allison, P. A., 1988 a. Soft-bodied squids from the Jurassic Oxford Clay. Lethaia 21, 403–10.
Allison, P. A., 1988 b. Konservat-Lagerstätten: cause and classification. Paleobiology 14, 331–44.
Atkins, D., 1937. On the ciliary mechanisms and interrelationships of lamellibranchs (Part 2). Quarterly Journal of the Microscopical Society 79, 339445.
Beche, H. T. de la., 1848. Presidential Address. Quarterly Journal of the Geological Society 4, 114.
Briggs, D. E. G., & Kear, A. J., 1993. Fossilization of softtissues in the laboratory. Science 259, 1439–42.
Briggs, D. E. G., Kear, A. J., Martill, D. M., & Wilby, P. R., 1993. Phosphatization of soft tissues in experiments and fossils. Journal of the Geological Society, London 150, 1035–8.
Cox, L. R., 1929. Synopsis of the Lamellibranchia of the Portland Beds of England. Proceedings of the Dorset Natural History and Archaeological Society 50,130202.
Cox, L. R., 1969. General features of the Bivalvia. In Treatise on Invertebrate Paleontology, Part N, volume 1, Mollusca 6, Bivalvia (eds Moore, R. C. and Teichert, C.). Geological Society of America, Inc. and University of Kansas, Kansas.
Fürsich, F. T., Palmer, T. J., & Goodyear, K. L., 1994. Growth and disintegration of bivalve-dominated patch reefs in the Upper Jurassic of Southern England. Palaeontology 37, 131–71.
Golubic, S., & Hofmann, H. J., 1976. Comparison of Holocene and Mid-precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. Journal of Palaeontology 50,1074–82.
Hirschler, A., Lucas, J., & Hubert, J. C., 1990 a. Bacterial involvement in apatite genesis. FEMS Microbiology Ecology 73,211–20.
Hirschler, A., Lucas, J., & Hubert, J. C., 1990 b. Apatite genesis: A biologically induced or biologically controlled mineral formation process? Geomicrobiology Journal 7, 4757.
Hofmann, H. J., 1976. Precambrian microflora, Belcher Islands, Canada: Significance and systematics. Journal of Paleontology 50, 1040–73.
Lucas, J., & Prévôt, L., 1984. Apatite synthesis by bacterial activity from phosphatic organic matter and several calcium carbonates in natural freshwater and seawater. Chemical Geology 42, 101–18.
Martill, D. M., 1988. Preservation offish in the Cretaceous of Brazil. Palaeontology 31, 118.
Martill, D. M., 1990. Macromolecular resolution of fossilized muscle from an elopomorph fish. Nature 346, 171–2.
Martill, D. M., & Harper, E., 1990. Critical point drying, a technique for palaeontologists. Palaeontology 33, 423–8.
Martill, D. M., Wilby, P. R., & Unwin, D. M., 1990. Stripes on a pterosaur wing. Nature 346, 166.
Martill, D. M., & Wilby, P. R., 1994. Lithified prokaryotes associated with fossil soft-tissues from the Santana Formation (Cretaceous) of Brazil, Kaupia 4, 7177.
Martinson, G. G., Nessov, L. A., & Strarobogatov, Ya. J., 1986. Unusual find of gill apparatus in Cretaceous Trigoniodoidea bivalve molluscs. Biulleten Moskovskogo Obshchestva Ispytatelei Prirody Otdel Geologicheskii 61, 94–7 (in Russian).
Mehl, J., 1990. Fossilerhaultung von kiemen bei Plesioteuthis prisca (Rüppell 1829) (Vampyromorpha, Cephalopoda) aus unterithonen Plattenkalken der Altmühlalb. Archaeopteryx 8, 7791.
Nathan, Y., & Sass, E., 1981. Stability relations of apatites and calcium carbonates. Chemical Geology 34, 103–11.
Ruttenberg, K. C., & Berner, R. A., 1993. Authigenic apatite formation and burial in sediments from nonupwelling, continental margin environments. Geochimica et Cosmochimica Acta 57, 9911007.
Schmitz, M., 1991. Die Koprolithen mitteleozäner Vertebraten aus der Grube Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg 137, 199 pp.
Schultze, H-P., 1989. Three-dimensional muscle preservation in Jurassic fishes of Chile. Revista Geológica de Chile 16, 183215.
Soudry, D., 1992. Primary bedded phosphorites in the Campanian Mishash Formation, Negev, southern Israel. Sedimentary Geology 80, 7788.
Soudry, D., & Lewy, Z., 1988. Microbially influenced formation of phosphate nodules and megafossil moulds (Negev, southern Israel). Palaeogeography, Palaeoclimatology, Palaeoecology 64, 1534.
Vinodradov, A. P., 1953. The elementary chemical composition of marine organisms. Sears Foundation for Marine Research, Yale University, Memoir II, Denmark.
Wilby, P. R., 1993. The role of organic matrices in postmortem phosphatization of soft-tissues. Kaupia 2, 99113.
Wilby, P. R., & Martill, D. M., 1992. Fossil fish stomachs: a microenvironment for exceptional preservation. Historical Biology 6, 2536.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed