Skip to main content Accessibility help
×
Home

Partial melting of oceanic sediments in subduction zones and its contribution to the petrogenesis of peraluminous granites in the Chinese Altai

  • QUN LUO (a1) (a2), CHEN ZHANG (a1) (a3) (a4), SHU JIANG (a5), LUOFU LIU (a1) (a3) (a4), DONGDONG LIU (a2), XIANGYE KONG (a1) (a2), XIAOYU LIU (a3) and XINPENG WANG (a3)...

Abstract

Late Carboniferous magmatism in the Chinese Altai provides an important view of geodynamic processes active during crustal growth in the Central Asian Orogenic Belt (CAOB). In this study, five representative peraluminous granite plutons from the Chinese Altai were selected for systematic geochronological, geochemical and Sr–Nd–Hf isotopic analyses (Table 1). These granites were emplaced between 449 and 327 Ma in an active subduction zone, and have moderate to high SiO2 (66.54–76.13 wt%), moderate Na2O+K2O (6.27–7.66 wt%), and high Al2O3 contents (12.43–16.18 wt%). All granite samples in this study showed significant decoupling of the Nd and Hf isotope systems. Results show negative εNd(t) values (−3.3 to −0.9), and predominantly positive εHf(t) values (+0.24 to +8.01, n=57) except for a few negative εHf(t) values (−7.44 to −0.03, n=9), high Mg# values (28.69–53.33), high Nd/Hf ratios (4.26–43.57), and enrichment of large-ion lithophile elements (LILEs; e.g. Pb, Th, and U), suggesting that the granites were derived from the partial melting of oceanic sediments and the associated mantle wedge, with fractionation of plagioclase, K-feldspar and biotite. In situ zircon Hf isotopic analyses yield negative εHf(t) values from −30.6 to −13.7 for the zircon xenocrysts. The U–Pb ages and Hf isotopic ratios of these zircon xenocrysts were probably inherited from oceanic sediments. Zircon saturation temperatures suggest that these peraluminous granites were emplaced at 537–765°C. We propose that: (1) the Nd isotopic system more faithfully reflects the source of peraluminous magmas in the Chinese Altai than the Hf isotopic system, and (2) the oceanic sediment recycling was an important process during continental growth in the CAOB.

Copyright

Corresponding author

Author for correspondence: sjiang@egi.utah.edu

References

Hide All
Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.
Anderson, D. L. 1989. Theory of the Earth. Oxford: Blackwell, 366 pp.
Anderson, D. L. 2001. Topside tectonics. Science 293, 2016–18.
Anderson, D. L. 2006. Speculations on the nature and cause of mantle heterogeneity. Tectonophysics 416, 722.
Asahara, Y., Tanaka, T., Kamioka, H., Nishimura, A. & Yamazaki, T. 1999. Provenance of the north Pacific sediments and process of source material transport as derived from Rb-Sr isotopic systematics. Chemical Geology 158, 271–91.
Ayres, M. & Harris, N. 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chemical Geology 139, 249–69.
Bayon, G., German, C. R., Boella, R. M., Milton, J. A., Taylor, R. N. & Nesbitt, R. W. 2002. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chemical Geology 187, 179–99.
Ben Othman, D. B., White, W. M. & Patchett, J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust–mantle recycling. Earth and Planetary Science Letters 94, 121.
BGMRX (Bureau of Geology Mineral Resources of Xinjiang Uygur Autonomous Region), 1993. Regional Geology of Xinjiang Uygur Autonomous Region. People's Republic of China, Ministry of Geology and Mineral Resources. Geological Memoirs, Series 1, No. 32. Beijing: Geological Publishing Housepp. 6–206 (in Chinese).
Biske, Y. S. & Seltmann, R. 2010. Paleozoic Tianshan as a transitional region between the Rheic and Urals-Turkestan Oceans. Gondwana Research 17, 602–13.
Brenan, J. M., Shaw, H. F., Ryerson, F. J. & Phinney, D. L. 1995. Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta 59, 3331–50.
Cai, K., Sun, M., Yuan, C., Xiao, W. J., Zhao, G. C., Long, X. P. & Wu, F. Y. 2012. Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: implications for geodynamic change of the accretionary orogenic belt. Gondwana Research 22, 681–98.
Cai, K., Sun, M., Yuan, C., Zhao, G. C., Xiao, W. J., Long, X. P. & Wu, F. Y. 2010. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: implications for petrogenesis and tectonic evolution. Gondwana Research 18, 638–52.
Cai, K., Sun, M., Yuan, C., Zhao, G. C., Xiao, W. J., Long, X. P. & Wu, F. Y. 2011a. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai. NW China. Lithos 127, 261–81.
Cai, K., Sun, M., Yuan, C., Zhao, G., Xiao, W., Long, X. & Wu, F. 2011b. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: evidence from zircon U—Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences 42, 949–68.
Chai, F. M., Mao, J. W., Dong, L. H., Yang, F. Q., Liu, F., Geng, X. X. & Zhang, Z. X. 2009. Geochronology of metarhyolites from the Kangbutiebao Formation in the Kelangbasin, Altay Mountains, Xinjiang: implications for the tectonic evolution and metallogeny. Gondwana Research 16, 189200.
Chauvel, C., Marini, J. C., Plank, T. & Ludden, J. N. 2009. Hf–Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems 10, 514–27.
Chen, B. & Jahn, B. M. 2004.Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence. Journal of Asian Earth Sciences 23, 69703.
Conrad, C. P. & Lithgow-Bertelloni, C. 2003. How mantle slabs drive plate tectonics. Science 298, 207–9.
Davies, G. R. & Tommasini, S. 2000. Isotopic disequilibrium during rapid crustal anatexis: implications for petrogenetic studies of magmatic processes. Chemical Geology 162, 169–91.
Dickinson, W. R. & Snyder, W. S. 1979. Geometry of subducted slabs related to San Andreas transform. Journal of Geology 87, 609927.
Farina, F. & Stevens, G. 2011. Source controlled 87Sr/86Sr isotope variability in granitic magmas: the inevitable consequence of mineral-scale isotopic disequilibrium in the protolith. Lithos 122, 189200.
Gasparon, M. & Varne, R. 1998. Crustal assimilation versus subducted sediment input in west Sunda arc volcanics: an evaluation. Mineralogy & Petrology 64, 89117.
GCRSX (Group for Compilation of Regional Stratigraphy of Xinjiang), 1981. Regional Stratigraphic Table of NW China: Xinjiang Uygur Autonomous Region Fascicule. Beijing: Geological Publishing House, pp. 711.
Geng, H. Y., Sun, M., Yuan, C., Xiao, W. J., Xian, W. S., Zhao, G. C., Zhang, L. F., Wong, K. & Wu, F. Y. 2009. Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction? Chemical Geology 266, 364–89.
Goolaerts, A., Mattielli, N., Jong, J. D., Weis, D. & Scoates, J. S. 2004. Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS. Chemical Geology 206 (1–2), 19.
Grassi, D. & Schmidt, M. W. 2011. The melting of carbonated pelites from 70 to 700 km depth. Journal of Petrology 52, 765–89.
Hammouda, B. 1994. Random phase approximation for compressible polymer blends. Journal of Non-Crystalline Solids 172–174, 927–31.
Han, B. F., Wang, S. G., Jahn, B. M., Hong, D. W., Kagami, H. & Dun, Y. L. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology 138, 135–59.
Handley, H. K., Turner, S., Macpherson, C. G., Gertisser, R. & Davidson, J. P. 2011. Hf-Nd isotope and trace element constraints on subduction inputs at island arcs: limitations of Hf anomalies as sediment input indicators. Earth and Planetary Science Letters 304, 212–23.
He, Z. Y., Sun, L. X., Mao, L. J., Zong, K. Q. & Zhang, Z. M. 2015. Zircon U–Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth. Chinese Science Bulletin 60, 389–99 (in Chinese with English abstract).
Hofmann, A. W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–29.
Hogan, J. P. & Sinha, A. K. 1991.The effect of accessory minerals on the redistribution of lead isotopes during crustal anatexis: a model. Geochimica et Cosmochimica Acta 55, 335–48.
Hong, D., Zhang, J., Wang, T., Wang, S. & Xie, X. 2004. Continental crustal growth and the super continental cycle: evidence from the Central Asian Orogenic Belt. Journal ofAsian Earth Sciences 23, 799813.
Hu, A. Q., Jahn, B. M., Zhang, G. X., Chen, Y. B. & Zhang, Q. F. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328, 1551.
Iizuka, T. & Hirata, T. 2005. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC–ICPMS technique. Chemical Geology 220, 121–37.
Jahn, B. M. & Condie, K. C. 1995.Evolution of the Kaapvaal Craton as viewed from geochemical and SmNd isotopic analyses of intracratonic pelites. Geochimica et Cosmochimica Acta 59 (11), 2239–58.
Jahn, B. M., Windley, B. F., Natalin's, B. & Dobretsov, N. 2004. Phanerozoic continental growth in central Asia. Journal of Asian Earth Sciences 23, 599603.
Jahn, B. M., Wu, F. Y. & Chen, B. 2000a. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 181–93.
Jahn, B. M., Wu, F. & Chen, B. 2000b. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic. Transaction of Royal Society of Edinburgh Earth Science 91, 181–93.
Jarrard, R. D. 1986. Relations among subduction parameters. Reviews of Geophysics 24, 217–84.
Jiang, Y. D., Sun, M., Zhao, G. C., Yuan, C., Xiao, W. J., Xia, X. P., Long, X. P. & Wu, F. Y. 2011. Precambrian detrital zircons in the Early Paleozoic Chinese Altai: their provenance and implications for the crustal growth of central Asia. Precambrian Research 189, 140–54.
Jiang, Y. D., Sun, M., Zhao, G. C., Yuan, C., Xiao, W. J., Xia, X. P., Long, X. P. & Wu, F. Y. 2010. The 390 Ma high-T metamorphism in the Chinese Altai: consequence of ridge-subduction? American Journal of Science 310 (10), 1421–52.
Johnson, M. C. & Plank, T. 1999. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems 1, 1007. doi: 10.1029/1999GC000014.
Karsten, J. L., Klein, E. M. & Sherman, S. B. 1996. Subduction zone geochemical characteristics in ocean ridge basalts from the southern Chile Ridge: implication of modern ridge subduction systems for the Archean. Lithos 37, 143–61.
Kempton, P. D., Pearce, J. A., Barry, T. L., Fitton, J. G., Langmuir, C. & Christie, D. M. 2002. Sr–Nd–Pb–Hf isotope results from ODP leg 187: evidence for mantle dynamics of the Australian–Antarctic Discordance and origin of the Indian MORB source. Geochemistry Geophysics Geosystems 3, 135.
Kessel, R., Schmidt, M. W., Ulmer, P. & Pettke, T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–7.
Knesel, K. M. & Davidson, J. P. 1996. Isotopic disequilibrium during melting of granite and implications for crustal contamination of magmas. Geology 24, 243–6.
Kröner, A., Hegner, E., Lehmann, B., Heinhorst, J., Wingate, M., Liu, D. & Ermelov, P. 2008.Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics. Journal of Asian Earth Sciences 32, 118–30.
Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Seltmann, R., Alexeiev, D. V., Hoffmann, J. E., Wong, J., Sun, M., Cai, K., Wang, T., Tong, Y., Wilde, S. A., Degtyarev, K. E. & Rytsk, E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research 25, 103–25.
Long, X. P., Sun, M., Yuan, C., Xiao, W. J., Lin, S. F., Wu, F. Y., Xia, X. P. & Cai, K. D. 2007. U–Pb and Hf isotopic study of zircons from metasedimentary rocks in the Chinese Altai: implications for Early Palaeozoic tectonic evolution. Tectonics 26, TC5015. doi: 10.1029/2007TC002128.
Long, X. P., Yuan, C., Sun, M., Xiao, W., Wang, Y., Cai, K. & Jiang, Y. 2012. Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, Central Asia: evidence for a northward-derived mafic source and insight into Nd model ages in accretionary orogen. Gondwana Research 22, 554–66.
Long, X. P., Yuan, C., Sun, M., Xiao, W. J., Zhao, G. C., Wang, Y. J. & Cai, K. D. 2010. Detrital zircon ages and Hf isotopes of the early Paleozoic Flysch sequence in the Chinese Altai, NW China: new constraints on depositional age, provenance and tectonic evolution. Tectonophysics 180, 213–31.
Lv, Z. H., Zhang, H., Tang, Y. & Guan, S. J. 2012. Petrogenesis and magmatic hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: evidence from zircon U—Pb and Hf isotopes. Lithos 154, 374–91.
McCulloch, M. T. & Gamble, J. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters 102, 358–74.
Miller, C. F. 1985. Are strongly peralumious magmas derived from pelitic-sedimentary sources? J. Geol. 93, 673–89.
Münker, C., Worner, G., Yogodzinski, G. & Churikova, T. 2004. Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas. Earth and Planetary Science Letters 224, 275–93.
Nebel, O., Münker, C., Nebel-Jacobsen, Y. J., Kleine, T., Mezger, K. & Mortimer, N. 2007. Hf-Nd-Pb isotope evidence from Permian arc rocks for the long-term presence of the Indian-Pacific mantle boundary in the SW Pacific. Earth and Planetary Science Letters 254, 377–92.
Osamu, K. 1995. Migration of igneous activities related to ridge subduction in Southwest Japan and the East Asian continental margin from the Mesozoic to the Paleogene. Tectonophysics 245, 2535.
Patiño Douce, A. E. & Johnston, A. D. 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology 107, 202–18.
Pearce, J. A., Kempton, P. D. & Gill, J. B. 2007. Hf–Nd evidence for the origin and distribution of mantle domains in the SW Pacific. Earth and Planetary Science Letters 260, 98114.
Pearce, J. A., Kempton, P. D., Nowell, G. M. & Noble, S. R. 1999. Hf-Nd element isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. Journal of Petroleum Geology 40, 1579–611.
Pearce, J. A. & Peate, D. W. 1995. Tectonic implications of the compositions of volcanic arc magmas. Annual Review of Earth and Planetary Sciences 23, 251– 85.
Plank, T. & Langmuir, C. H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–94.
Safonova, I. Y., Buslov, M. M., Iwata, K. & Kokh, D. A. 2004. Fragments of Vendian-Early Carboniferous oceanic crust of the Paleo-Asian Ocean in foldbelts of the Altai Sayan region of Central Asia: geochemistry, biostratigraphy and structural setting. Gondwana Research 7, 771–90.
Santosh, M. & Kusky, T. 2010. Origin of paired high pressure-ultrahigh-temperature orogens: a ridge subduction and slab window model. Terra Nova 22, 3542.
Sengör, A. M. C. & Natal'in, B. A. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences 24, 263337.
Sengör, A. M. C., Natal'in, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364, 299307.
Spandler, C. & Pirard, C. 2013. Element recycling from subducting slabs to arc crust: a review. Lithos 170–171, 208–23.
Staudigel, H., Davies, G. R., Hart, S. R., Marchant, K. M. & Smith, B. M. 1995. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418. Earth and Planetary Science Letters 130 (1–4), 169–85.
Su, B. X., Qin, K. Z., Lu, Y. H., Sun, H. & Sakyi, P. A. 2015. Decoupling of whole-rock Nd-Hf and zircon Hf-O isotopic compositions of a 284 Ma mafic-ultramafic intrusion in the Beishan Terrane, NW China. International Journal of Earth Sciences 104, 1721–37.
Su, B. X., Qin, K. Z., Sakyi, P. A., Li, X. H., Yang, Y. H., Sun, H., Tang, D. M., Liu, P. P., Xiao, Q. H., Malaviarachchi, S. P. K. 2011. U—Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in southern Central Asian Orogenic Belt: tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research 20, 516–31.
Sun, M., Long, X. P., Cai, K. D., JiangY. D., B. Y, W. Y. D., B. Y, W., Yuan, C., Zhao, G. C., Xiao, W. J. & Wu, F. Y. 2009. Early Paleozoic ridge subduction in the Chinese Altai: insight from the abrupt change in zircon Hf isotopic compositions. Science in China 39, 114.
Sun, M., Yuan, C., Xiao, W., Long, X., Xia, X., Zhao, G., Lin, S., Wu, F. & Kröner, A. 2008. Zircon U—Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chemical Geology 247, 352–83.
Sylvester, P. J. 1998. Post-collisional strongly peraluminous granites. Lithos 45, 2944.
Tang, M., Wang, X. L., Shu, X. J., Wang, D., Yang, T. & Gopon, P. 2014. Hafnium isotopic heterogeneity in zircons from granitic rocks: geochemical evaluation and modeling of ‘zircon effect’ in crustal anatexis. Earth and Planetary Science Letters 389, 188–99.
Tatsumi, Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research 94, 4697–707.
Thorkelson, D. J. 1996. Subduction of diverging plates and the principles of slab window formation. Tectonophysics 255, 4763.
Tollstrup, D. L. & Gill, J. B. 2005. Hafnium systematics of the Mariana arc: evidence for sediment melt and residual phases. Geology 33, 737–40.
Tommasini, S. & Davies, G. R. 1997. Isotope disequilibrium during anatexis: a case study of contact melting, Sierra Nevada, California. Earth and Planetary Science Letters 148, 273–85.
Tong, Y., Wang, T., Hong, D. W., Dai, Y. J., Han, B. F. & Liu, X. M. 2007. Ages and origin of the early Devonian granites from the north part of Chinese Altai Mountains and its tectonic implications. Acta Petrologica Sinica 23, 1933–44.
Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge, Cambridge University Press, 456 pp.
Turner, S., Handler, M., Bindeman, I. & Suzuki, K. 2009. New insights into the origin of O-Hf-Os isotope signatures in arc lavas from Tonga-Kermadec. Chemical Geology 266, 196202.
Wang, T., Hong, D. W., Jahn, B. M., Tong, Y., Wang, Y. B., Han, B. F. & Wang, X. X. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, northwest China: implications for the tectonic evolution of an accretionary Orogen. Journal of Geology 114, 735–51.
Wang, T., Jahn, B. M., Kovach, V. P., Tong, Y., Hong, D. W. & Han, B. F. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos 110, 359–72.
Wang, Y. J., Long, X., Wilde, S., Xu, H., Sun, M., Xiao, W., Yuan, C. & Cai, K. 2014. Provenance of Early Paleozoic metasediments in the central Chinese Altai: implications for tectonic affinity of the Altai-Mongolia terrane in the Central Asian Orogenic Belt. Lithos 210–211, 5768.
Wang, Y. J., Yuan, C., Long, X. P., Sun, M., Xiao, W. J., Zhao, G. C., Cai, K. D. & Jiang, Y. D. 2011. Geochemistry, zircon U—Pb ages and Hf isotopes of the Paleozoic volcanic rocks in the northwestern Chinese Altai: petrogenesis and tectonic implications. Journal of Asian Earth Sciences 42, 969–85.
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64 (2), 295304.
White, W. M. & Patchett, J. 1984. Hf Nd Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth and Planetary Science Letters 67 (2), 167–85.
Windley, B. F., Alexeiev, D., Xiao, W., Kroner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 164, 3147.
Windley, B. F., Kröner, A., Guo, J., Qu, G., Li, Y. & Zhang, C. 2002. Neoproterozoic to Palaeozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. Journal of Geology 110, 719–39.
Woodhead, J. D., Hergt, J. M., Davidson, J. P. & Eggins, S. M. 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction processes. Earth and Plane Science Letters 192, 331–46.
Xiao, W. J., Han, C. M., Yuan, C., Sun, M., Lin, S. F., Chen, H. L., Li, Z. L., Li, J. L. & Sun, S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences 32, 102–17.
Xiao, W. J., Huang, B. C., Han, C. M., Sun, S. & Li, J. L. 2010. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Research 18, 253–73.
Xiao, W. J., Kröner, A. & Windley, B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences 98, 1185–8.
Xiao, W. J. & Santosh, M. 2014. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Research 25 (4), 1429–44.
Xiao, W. J., Windley, B. F., Badararch, G., Li, J., Sun, S., Qin, K. & Wang, Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of central Asia. Journal of Geological Society London 161, 14.
Xiao, Y., Zhang, H. F., Shi, J. A., Su, B. X., Sakyi, P. A., Hu, Y. & Zhang, Z. 2011. Late Paleozoic magmatic record of East Junggar, NW China and its significance: implication from zircon U—Pb dating and Hf isotope. Gondwana Research 20, 532–42.
Xie, L. W., Zhang, Y. B., Zhang, H. H., Sun, J. F. & Wu, F. Y. 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Science in China Series D: Earth Sciences 53, 220–8.
Yakubchuk, A. S. 2004. Architecture and mineral deposit settings of Altaid orogenic collage: a revised model. Journal of Asian Earth Sciences 23, 761–79.
Yang, J. H., Wu, F. Y., Wilde, S. A., Xie, L. W., Yang, Y. H. & Liu, X. M. 2007. Tracing magma mixing in granite genesis: in situ U—Pb dating and Hf isotope analysis of zircons. Contributions to Mineralogy and Petrology 153, 177–90.
Yin, J. Y., Chen, W., Yuan, C., Yu, S., Xiao, W. J., Long, X. P., Li, J. & Sun, J. B. 2015. Petrogenesis of Early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: implications for geodynamic evolution. Gondwana Research 27, 1630–45.
Yin, J. Y., Yuan, C., Sun, M., Long, X. P., Zhao, G. C. & Geng, H. Y. 2010. Late Carboniferous High-Mg dioritic dykes in Western Junggar, NW China: geochemical features, petrogenesis and tectonic implications. Gondwana Research 17, 145–52.
You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H. & Spivack, A. J. 1996. Trace element behaviour in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters 140, 4152.
Yu, Y., Sun, M., Long, X. P., Li, P. F., Zhao, G. C., Kröner, A., Broussolle, A. & Yang, J. H. 2016. Whole-rock Nd-Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai: constraints on the nature of the lower crust and tectonic setting. Gondwana Research 47, 142–60.
Yuan, H., Gao, S., Liu, X., Li, H., Günther, D. & Wu, F. 2004. Accurate U—Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research 28, 353–70.
Yuan, C., Sun, M., Xiao, W. J., Li, X. H., Chen, H. L., Lin, S. F., Xia, X. P. & Long, X. P. 2007. Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chemical Geology 242, 2239.
Zeng, L.-S., Asimow, P. D. & Saleeby, J. B. 2005a. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentory source. Geochimica et Cosmochimica Acta 69, 3671–82.
Zeng, L.-S., Saleeby, J. B. & Asimow, P. 2005 b. Nd isotopic disequilibrium during crustal anatexis: a record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology 33, 53–6.
Zhang, C., Liu, L. F., Santosh, M. & Zhang, X. 2016. Sediment recycling and crustal growth in the Central Asian Orogenic Belt: evidence from Sr-Nd-Hf isotopes and trace elements in granitoids of the Chinese Altay. Gondwana Research 47, 142–60.
Zhang, H. F., Sun, M., Lu, F. X., Zhou, X. H., Zhou, M. F., Liu, Y. S. & Zhang, G. H. 2001. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. Geochemical Journal 35, 315–31.
Zhang, Z. M., Zhao, G. C., Santosh, M., Wang, J. L., Dong, X. & Shen, K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeasternTibet: evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Research 17, 615–31.
Zhao, Z. H., Xiong, X. L., Wang, Q., Bai, Z. H. & Qiao, Y. L. 2009. Late Paleozoic underplating in North Xinjiang: evidence from shoshonites and adakites. Gondwana Research 16, 216–26.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed