Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T11:58:34.688Z Has data issue: false hasContentIssue false

Palaeo-oceanography and biogeography in the Tremadoc (Ordovician) Iapetus Ocean and the origin of the chemostratigraphy of Dictyonema flabelliforme black shales

Published online by Cambridge University Press:  01 May 2009

P. Wilde
Affiliation:
Marine Sciences Group, Department of Paleontology, University of California, Berkeley, California 94720, U.S.A.
M. S. Quinby-Hunt
Affiliation:
Marine Sciences Group, Department of Paleontology, University of California, Berkeley, California 94720, U.S.A.
W. B. N. Berry
Affiliation:
Marine Sciences Group, Department of Paleontology, University of California, Berkeley, California 94720, U.S.A.
C. J. Orth
Affiliation:
Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 U.S.A.

Abstract

High concentrations of vanadium, molybdenum, uranium, arsenic, antimony with low concentrations of manganese, iron and cobalt heretofore restricted to Dictyonema flabelliforme-bearing Tremadoc black shales in Balto-Scandia, have been found in coeval black shales in the Saint John, New Brunswick area. Prior palaeogeographic reconstructions place these areas about 400 km. apart in high southern latitudes in the Iapetus Ocean, with New Brunswick in proximity to Avalonia (southeastern Newfoundland). These geochemical similarities are not found in coeval Tremadoc black shales of Bolivia, New York, Quebec, Wales, and Belgium. Palaeo-oceanographic reconstructions of Iapetus support the proximity of Balto-Scandia and the Saint John area during the early Tremadoc and Gee'sx (1981) suggestion that the signature is a feature of eastern Iapetus. Furthermore, first-order modelling of the major surface currents and related primary productivity in the Tremadoc Iapetus Ocean explain the apparent wide latitudinal range of D. flabelliforme (Fortey, 1984) and the anomalous trace metal content of certain black shales of that time. Variations in the elemental content of these black shales is produced by oceanographic and geologic conditions unique to the geographic site. The distinctive Balto-Scandic geochemical signature resulted from the coincidence of anoxic waters transgressing the shelf at latitudes of high organic productivity at the polar Ekman planetary divergence. This produces the conditions for concentrations of V, U, and Mo in the shales. Metal enriched anoxic bottom waters produced by leaching of volcanics or through hydrothermal activity may be the source of the other enhanced signature elements such as As and Sb. The absence of this geochemical signature in younger non-D. flabelliforme Tremadoc and later black shales in Balto-Scandia and other areas suggests that the closing of Iapetus moved the depositional sites into less productive oceanic areas.

Type
Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, A., Dahlman, B. & Gee, D. G. 1982. Kerogen and uranium resources in the Cambrian alum shales of the Billingen–Falbygden and Närke areas, Sweden. Geologiska Föreningens (i) Stockholm Föhandlingar 10, 197209.Google Scholar
Anderton, R., Bridges, P. H., Leeder, M. R. & Sellwood, B. W. 1979. A Dynamic Stratigraphy of the British Isles. London: George Allen and Unwin, pp. 83–4.Google Scholar
Armands, G. 1972. Geochemical studies of Uranium, Molybdenium and Vanadium in a Swedish Alum shale. Stockholm University contribution in Geology 27, 1148.Google Scholar
Berner, R. A. 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology 51, 359–65.Google Scholar
Berner, R. A. & Raiswell, R. R. 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta 47, 855–62.CrossRefGoogle Scholar
Berry, W. B. N. & Wilde, P. 1978. Progressive Ventilation of the Oceans–an explanation for the distribution of the Lower Paleozoic black shales. American Journal of Science 278, 257–75.Google Scholar
Berry, W. B. N., Wilde, P., Quinby-Hunt, M. S. & Orth, C. J. 1986. Trace Elements Signatures in Dictyonema Shales and their geochemical and stratigraphic significance. Norsk geologisk Tidsskrift 66, 4551.Google Scholar
Berry, W. B. N., Wilde, P. & Quinby-Hunt, M. S. 1987 in press. The Oceanic Non-Sulfidic Oxygen Minimum Zone – A Habitat for Graptolites. Bulletin of the Geological Society of Denmark.Google Scholar
Bjørlykke, K. 1971. Petrology of Ordovician sediments from Wales. Norges geologisk Tidsskrift 51, 123–39.Google Scholar
Bjørlykke, K. 1974 a. Depositional history and geochemical composition of Lower Paleozoic epicontinental sediments from the Oslo region. Norges geologiske Under-sokelse 305, 181.Google Scholar
Bjørlykke, K. 1974 b. Geochemical and mineralogical influence of Ordovician island arcs on epicontinental clastic sedimentation: a study of Lower Palaeozoic sedimentation in the Oslo region, Norway. Sedimentology 21, 251–72.CrossRefGoogle Scholar
Bluck, B. J., Halliday, A. N., Aftalion, M. & MacIntyre, R. M. 1980. Age and origin of Ballantrae Ophiolite and its significance to the Caledonian Orogeny and Ordovician time scale. Geology 8, 492–95.Google Scholar
Brewer, P. G. & Spencer, D. W. 1974. Distribution of some trace metals in the Black Sea. In The Black Sea – Geology, Chemistry, and Biology (ed Degens, E. T. and Ross, D. A.) pp. 137–43. Tulsa: American Association of Petroleum Geologists Memoir 20.Google Scholar
Brongersma-Sanders, M. 1966. The fertility of the sea and its bearing on the origin of oil. In Advances in Organic Geochemistry (ed. Hobson, G. D., Speers, G. L.) pp. 231–6. Oxford: Pergamon.Google Scholar
Brumsack, H. J. 1986. The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments form the Gulf of California. In North Atlantic Palaeocenaography (ed. Summerhayes, C. J., Schackleton, N.). pp. 447–62, Oxford: Blackwells.Google Scholar
Church, W. R. & Gayer, R. A. 1973. The Ballantrae ophiolite. Geological Magazine 110, 497592.Google Scholar
Cocks, L. R. M. & Fortey, R. A. 1982. Faunal evidence for oceanic separations in the Palaeozoic of Britain. Journal of the Geological Society of London 139, 465–78.Google Scholar
Conte, M. H., Bishop, J. K. B. & Backus, R. H. 1986. Nonmigratory 12-kHz, deep scattering layers of Sargasso Sea Origin in warm-core rings. Deep-Sea Research 33, 1869–84.Google Scholar
Cooper, R. A. 1979. Sequence and correlation of Tremadoc graptolite assemblages. Alcheringa 3 719.CrossRefGoogle Scholar
Degens, E. T., Emeis, K.-C., Mycke, B. & Wiesner, M. G. 1986. Turbidites, the principal mechanism yielding black shales in the early deep Atlantic. In North Atlantic Palaeoceanography (ed Summerhayes, C. J. and Shackleton, N.). pp. 447–62, Oxford: Blackwells.Google Scholar
Dewey, J. F. 1971. A model for the Lower Palaeozoic evolution of the southern margin of the early Caledonides of Scotland and Ireland. Scottish Journal of Geology 7, 219–40.CrossRefGoogle Scholar
Eisler, R. 1981. trace Metal Concentrations in Marine Organisms. Oxford: Pergamon Press, 687 pp.Google Scholar
Erdtmann, B.-D. 1982. Palaeobiogeography and environments of planktic dictyonemid graptolites during the earliest Ordovician. In The Cambrian-Ordovician boundary: sections, fossil distributions, and correlations (eds. Bassett, M. G. and Dean, W. T.), pp. 927, Cardiff: National Museum of Wales, Geological Series No. 3.Google Scholar
Erdtmann, B.-D. 1984. Outline eostratigraphic analysis of the Ordovician graptolite zones in Scandinavia in relation to the palaeogeographic disposition of the Iapetus. Geologica et Palaeontologica 18, 915.Google Scholar
Fortey, R. A. 1984. Global earlier Ordovician transgressions and regression and their biological implications. In Aspects of the Ordovican System (ed. Brunton, D. L.), pp. 3750, Oslo: Palaeontological Contributions from the University of Oslo, No. 295.Google Scholar
Fortey, R. A. & Skevington, D. 1980. Correlation of Cambrian–Ordovician boundary between Europe and North America: new data from western Newfoundland. Canadian Journal of Earth Sciences 17, 382–8.Google Scholar
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B. & Maynard, V. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta 43, 1075–90.CrossRefGoogle Scholar
Gee, D. G. 1980. Basement-cover relationships in the central Scandinavian Caledonides. Geologiska Föreningens (i) Stockholm Förhandlingar 102, 455–74.CrossRefGoogle Scholar
Gee, D. G. 1981. The Dictyonema-bearing phyllites at Nordaunevoll, eastern Trondelag, Norway. Norsk geologisk Tidsskrift 61, 93–5.Google Scholar
Goldberg, E. D. 1957. Biochemistry of trace metals. In Paleoecology (ed. Hedgpeth, J. W.), pp. 345–57, New York: Geological Society of America Memoir 67, 1.Google Scholar
Holland, H. D. 1979. Metals in black shales – a reassessment. Economic Geology 74, 1676–80.Google Scholar
Jedwab, J. & Boulegue, J. 1984. Graphite crystals in hydrothermal vents. Nature 310, 41–3.Google Scholar
Landing, L., Taylor, M. E. & Erdtmann, B. -D. 1978. Correlation of the Cambrian–Ordovician boundary between the Acado-Baltic and North American faunal provinces. Geology 6, 75–8.2.0.CO;2>CrossRefGoogle Scholar
La Fond, E. C. & La Fond, K. G. 1971. Oceanography and its relation to marine production. In Fertility of the Sea, (ed. Costhlow, J. D.), pp. 241–65. New York: Gordon and Breach.Google Scholar
Legrand, Ph. 1974. Development of rhabdosomes with four primary branches in the group Dictyonema flabelliforme (Eichwald). In Graptolite studies in honour of O. M. B. Bulman. (eds. Rickards, R. B., Jackson, D. E., Hughes, C. P.), pp. 1934, London: The Palaeontological Association Special Papers in Palaeontology No. 13.Google Scholar
Leventhal, J. S. & Hosterman, J. W. 1982. Chemical and Mineralogical analysis of Devonian Black-shale samples from Martin County, Kentucky; Caroll and Washington Counties, Ohio; Wise County, Virginia; and Overton County, Tennessee, USA. Chemical Geology 37, 239–64.Google Scholar
Lindstrom, M. & Vortisch, W. 1983. Indications of upwelling in the Lower Ordovician of Scandanavia. In Coastal Upwelling (eds. Thiede, J., Suess, E.) Part B., pp. 535–51, New York: Plenum.CrossRefGoogle Scholar
McGowan, J. A. 1972. The Nature of Oceanic Ecosystems. In The Biology of the Oceanic pacific (ed. Miller, C. B.), pp. 928, Corvallis, Oregon: Oregon State University Press.Google Scholar
Martin, J. H. & Knauer, G. A. 1973. The elemental composition of plankton. Geochimica et Cosmochimica Acta 37, 1639–53.Google Scholar
Minor, M. M., Hensely, W. K., Denton, M. M. & Garcia, S. R. 1982. An automated activation analysis system. Journal of Radioanalytical Chemistry 70, 459771.Google Scholar
Parrish, J. T. 1982. Upwelling and Petroleum Source Beds, with Reference to Paleozoic. American Association of Petroleum Geologists Bulletin 66, 750–74.Google Scholar
Peltola, E. 1968. Geochemical features in black schists of the Outokumper area, Finland. Bulletin of the Geological Society of Finland 40, 3950.Google Scholar
Raiswell, R. & Berner, R. A. 1986. Pyrite and organic matter in Phanerozoic normal marine shales. Geochimica et Cosmochimica Acta 50, 1967–76.Google Scholar
Raiswell, R. & Berner, R. A. 1987. Organic carbon losses during burial and thermal maturation of normal marine shales. Geology 15, 853–6.Google Scholar
Reid, J. L. Jr. 1985. Intermediate Waters of the Pacific Ocean. Baltimore: John Hopkins University Press, 85 pp.Google Scholar
Schenk, P. E. 1983. The Meguma Terrane of Nova Scotia, Canada – an aid in Trans-Atlantic correlation. In Regional Trends in the Geology of the Appalachian–Caledonian–Hercynian–Mauritanide Orogen (ed. Schenk, P. E.), pp. 121–30, Dordrecht, Holland: D. Reidel.Google Scholar
Scotese, C. R., Bambach, R. K., Barton, C., Van der Voo, R. & Ziegler, A. M. 1979. Paleozoic Basemaps. Journal of Geology 87, 2177.Google Scholar
Scotese, C. R. 1986. Phanerozoic Reconstructions: A New Look at the Assembly of Asia. University of Texas Institute for Geophysics Technical Report No. 66, 54 pp.Google Scholar
Stommel, H. 1957. A survey of ocean current theory. Deep-Sea Research, 4, 149–84.Google Scholar
Stumm, W. & Morgan, J. J. 1970. Aquatic Chemistry New York: Wiley, 583 pp.Google Scholar
Sunblad, K. & Gee, D. G. 1985. Occurrence of an uraniferous-vanadiniferous graphitic phyllite in the Köli Nappes of the Stekenjokk area, central Swedish Caledonides Geologiska Föreningens (i) Stockholm Föhandlingar 106, 269–74.Google Scholar
Tardy, Y. 1975. Element partition ratios in some sedimentary environments, I Statistical Treatments, II Studies on North-American black Shales. Sciences Geologiques: Bulletin, Srasbourg 28, 7595.Google Scholar
Vine, J. D. & Tourtelot, E. B. 1970. Geochemistry of black shale deposits – a summary report, Economic Geology 65, 253–72.Google Scholar
Vinogradov, A. P. 1953. The elemental composition of marine organisms. New Haven: Sears Foundation for Marine Research Memoir 2, 647 pp.Google Scholar
Wedepohl, K. H. 1964. Untersuchungen am Kupferschiefer in Nordwestdeutschland; Ein Beitrag zur Deutung der Genese bituminöser Sedimente. Geochimica et Cosmochimica Acta 28, 305–64.Google Scholar
Whittington, H. B., Dean, W. T., Fortey, R. A., Rickards, R. B., Rushton, A. W. A. & Wright, A. D. 1984. Definition of the Tremadoc Series and the series of the Ordovician System in Britain. Geological Magazine 121, 1733.Google Scholar
Wiebe, P. H. & McDougall, T. J. 1986. Introduction to a collection of papers on warm-core rings. Deep-Sea Research 33, 1455–7.CrossRefGoogle Scholar
Wilde, P. 1987. Model of Progressive Ventilation of the Late Precambrian-Early Paleozoic Ocean. American Journal of Science 287, 442–59.Google Scholar
Wilde, P. & Berry, W. B. N. 1982. Progressive Ventilation of the Oceans II, potential for return to anoxic conditions in the post-Paleozoic. In Nature and Origin of Cretaceous Carbon-Rich Facies, (eds. Schlanger, S. O., Cita, M. B.), pp. 209–24, New York: Academic Press.Google Scholar
Wilde, P. & Berry, W. B. N. 1984. Destabilization of the Oceanic density structure and its significance to Marine “Extinction” events. Palaeogeography, Palaeoclimatology, Palaeoecology 48, 143–62.Google Scholar
Wilde, P. & Berry, W. B. N. 1986. Role of Oceanographic factors in the generation of Global Bio-Events. In Global Bio-Events, (ed. Walliser, O.), pp. 7591, Berlin: Springer-Verlag.Google Scholar
Wilde, P., Quinby-Hunt, M., Berry, W. B. N. & Orth, C. J. 1984. Anoxic facies in the Lower Paleozoic Ocean. Geological Society of America Annual Meeting Reno pp. 994.Google Scholar
Wilde, P., Berry, W. B. N., Quinby-Hunt, M. S., Orth, C. J., Quintana, L. R. & Gilmore, J. S. 1986. Iridium abundances across the Ordovician-Silurian Stratotype. Science 233, 339–41.Google Scholar
Wooster, W. S. & Reid, J. L. Jr. 1963. Eastern Boundary Currents. In The Seas II, Composition of Sea Water and Descriptive Oceanography, (ed. Hill, N. H.), pp. 253–80. New York: Wiley Interscience.Google Scholar
Wright, J, Schrader, H. & Holser, W. T. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta 51, 631–44.Google Scholar
Yamamato, T. & Nishizawa, S. 1986 Small-scale zoo-plankton aggregation at the front of a Kuroshio warmcore ring. Deep-Sea Research 33, 1729–40.Google Scholar