Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T18:34:06.730Z Has data issue: false hasContentIssue false

The origin, cooling and alteration of A-type granites in southern Israel (northernmost Arabian–Nubian shield): a multi-mineral oxygen isotope study

Published online by Cambridge University Press:  27 October 2008

ADAR STEINITZ*
Affiliation:
Department of Geological and Environmental Sciences, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
YARON KATZIR
Affiliation:
Department of Geological and Environmental Sciences, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
JOHN W. VALLEY
Affiliation:
Department of Geology and Geophysics, University of Wisconsin, Madison, WI 53706, USA
YARON BE'ERI-SHLEVIN
Affiliation:
Department of Geological and Environmental Sciences, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
MICHAEL J. SPICUZZA
Affiliation:
Department of Geology and Geophysics, University of Wisconsin, Madison, WI 53706, USA
*
§Author for correspondence: adar.steinitz@ucalgary.ca; current address: Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada.

Abstract

A multi-mineral oxygen isotope study sheds light on the origin, cooling and alteration of Late Neoproterozoic A-type granites in the Arabian–Nubian shield of southern Israel. The oxygen isotope ratio of zircon of the Timna monzodiorite, quartz syenite and alkaline granite are within the range of mantle zircon (δ18O(Zrn) = 5.3 ± 0.6‰, 2σ), supporting the co-genetic mantle-derived origin previously suggested based on geochemical data and similar ɛNd(T) values and U–Pb ages (610 Ma). Likewise, olivine norite xenoliths within the monzodiorite (δ18O(Ol) = 5.41 ± 0.07‰) may have formed as cumulate in a parent mantle-derived magma. Within the Timna igneous complex, the latest and most evolved intrusion, an alkaline granite, has the least contaminated isotope ratio (δ18O(Zrn) = 5.50 ± 0.02‰), whereas its inferred parental monzodiorite magma has slightly higher and more variable δ18O(Zrn) values (5.60 to 5.93‰). The small isotope variation may be accounted for either by small differences in the temperature of zircon crystallization or by minor contamination of the parent magma followed by shallow emplacement and intrusion by the Timna alkaline granite. The Timna alkaline granite evolved, however, from a non-contaminated batch of mantle-derived magma. The formation of Yehoshafat granite (605 Ma; δ18O(Zrn) = 6.63 ± 0.10‰), exposed ~30 km to the south of the mineralogically comparable Timna alkaline granite, involved significant contribution from supracrustal rocks. A-type granites in southern Israel thus formed by differentiation of mantle-derived magma and upper crustal melting coevally. Fast grain boundary diffusion modelling and measured quartz-zircon fractionations demonstrate that the Timna and Yehoshafat alkaline granites cooled very rapidly below 600 °C in accordance with being epizonal. One to three orders of magnitude slower cooling is calculated for 30 Ma older calc-alkaline granites of the host batholith, indicating a transition from thick orogenic to extended crust. Significant elevation of the δ18O of feldspars occurred through water–rock interaction at moderate temperatures (100–250 °C), most probably during a thermal event in Early Carboniferous times.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agron, N. & Bentor, Y. K. 1981. The volcanic massif of Biq'at Hayareah (Sinai–Negev), a case of potassium metasomatism. Journal of Geology 89, 479–96.CrossRefGoogle Scholar
Bentor, Y. K. 1985. The crustal evolution of the Arabo-Nubian Massif with special reference to the Sinai Peninsula. Precambrian Research 28, 174.CrossRefGoogle Scholar
Beyth, M., Longstaffe, F. J., Ayalon, A. & Matthews, A. 1997. Epigenetic alteration of the Precambrian igneous complex at Mount Timna, southern Israel: Oxygen-isotope studies. Israel Journal of Earth Sciences 46, 111.Google Scholar
Beyth, M., Stern, R. J., Altherr, R. & Kröner, A. 1994. The Late Precambrian Timna igneous complex, southern Israel: Evidence for comagmatic-type sanukitoid monzodiorite and alkali granite magma. Lithos 31, 103–24.CrossRefGoogle Scholar
Black, R. & Liégeois, J. P. 1993. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African testimony. Journal of the Geological Society, London 150, 8998.CrossRefGoogle Scholar
Bonin, B. 2007. A-type granites and relaed rocks: Evolution of a concept, problems and prospects. Lithos 97, 129.CrossRefGoogle Scholar
Clayton, R. N., Goldsmith, J. R. & Mayeda, T. K. 1989. Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochimica et Cosmochimica Acta 53, 725–33.CrossRefGoogle Scholar
Clayton, R. N., Muffler, L. J. P. & White, D. E. 1968. Oxygen isotope study of calcite and silicates of the River Ranch No. 1 well, Salton sea geothermal field, California. American Journal of Science 266, 968–79.CrossRefGoogle Scholar
Cocks, L. R. M. & Torsvik, T. H. 2002. Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. Journal of the Geological Society, London 159, 631–44.CrossRefGoogle Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology 80, 189200.CrossRefGoogle Scholar
Creaser, R. A., Prince, R. C. & Worman, R. J. 1991. A-type granites revisited: assessment of a residual-source model. Geology 19, 163–6.2.3.CO;2>CrossRefGoogle Scholar
Criss, R. E. & Taylor, H. P. Jr. 1983. An 18O/16O and D/H study of tertiary hydrothermal systems in the southern half of the Idaho batholith. Geological Society of America Bulletin 94, 640–63.2.0.CO;2>CrossRefGoogle Scholar
Criss, R. E. & Taylor, H. P. Jr. 1986. Meteoric-hydrothermal systems. In Stable isotopes in high temperature geological processes (eds Valley, J. W., Taylor Jr, H. P. & O'Neil, J. R.), pp. 373424. Washington, DC: Mineralogical Society of America. Reviews in Mineralogy 16.CrossRefGoogle Scholar
Eby, G. N. 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26, 115–34.CrossRefGoogle Scholar
Eby, G. N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641–4.2.3.CO;2>CrossRefGoogle Scholar
Eiler, J. M., Baumgartner, L. P. & Valley, J. W. 1992. Intercrystalline stable isotope diffusion: a fast grain boundary model. Contributions to Mineralogy and Petrology 112, 543–57.CrossRefGoogle Scholar
Eiler, J. M., Baumgartner, L. P. & Valley, J. W. 1994. Fast grain boundary: A FORTRAN-77 program for calculating the effects of retrograde interdiffusion of stable isotopes. Computers & Geosciences 20, 1415–34.CrossRefGoogle Scholar
Eyal, M. & Hezkiyahu, T. 1980. Katherina Pluton: the outline of a petrologic framework. Israel Journal of Earth Sciences 29, 4152.Google Scholar
Eyal, M., Litvinovsky, B. A., Katzir, Y. & Zanvilevich, A. N. 2004. The Pan-African high K calc-alkaline peraluminous Elat Granite from southern Israel: geology, geochemistry and petrogenesis. Journal of African Earth Sciences 40, 115–36.CrossRefGoogle Scholar
Eyal, M. & Peltz, S. 1994. The structure of the Ramat Yotam caldera, southern Israel: a deeply eroded Late Precambrian ash-flow caldera. Israel Journal of Earth Sciences 43, 8190.Google Scholar
Feinstein, S., Eyal, M., Steckler, M. S., Kohn, B. P., Ibrahim, K. & Moh'd, B. K. 2003. Phanerozoic thermo-tectonic history of the Northern margin of the Arabo-Nubian shield across the Dead Sea transform. BSF Grant Report No. 97-248, 45–57.Google Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.CrossRefGoogle Scholar
Furnes, H., El-Sayed, M. M., Khalil, S. O. & Hassanen, M. A. 1996. Pan-African magmatism in the Wadi El-Imra district, Central Eastern Desert, Egypt: geochemistry and tectonic environment. Journal of the Geological Society, London 153, 705–18.CrossRefGoogle Scholar
Garfunkel, Z. 1980. Contribution to the geology of the Precambrian of the Elat area. Israel Journal of Earth Sciences 29, 2540.Google Scholar
Garfunkel, Z. 1999. History and paleogeography during the Pan-African orogen to stable platform transition: Reappraisal of the evidence from the Elat area and the Northern Arabian–Nubian Shield. Israel Journal of Earth Sciences 48, 135–57.Google Scholar
Genna, A., Nehlig, P., Le Goff, E., Guerrot, C. & Shanti, M. 2002. Proterozoic tectonism of the Arabian Shield. Precambrian Research 117, 2140.CrossRefGoogle Scholar
Hanchar, J. M. & Watson, E. B. 2003. Zircon saturation thermometry. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 89112. Reviews in Mineralogy and Geochemistry 53. Washington DC: Mineralogical Society of America.CrossRefGoogle Scholar
Hansmann, W. & Oberli, F. 1991. Zircon inheritance in an igneous rock suite from the Southern Adamello batholith (Italian Alps). Contribution to Mineralogy and Petrology 107, 501–18.CrossRefGoogle Scholar
Jarrar, G., Stern, R. J., Saffarini, G. & Al-Zubi, H. 2003. Late and post-orogenic Neoproterozoic intrusions of Jordan: implications for crustal growth in the northernmost segment of the East African Orogen. Precambrian Research 123, 295319.CrossRefGoogle Scholar
Johnson, P. R. & Woldehaimanot, B. 2003. Development of the Arabian–Nubian Shield; perspectives on accretion and deformation in the Northern East African Orogen and the assembly of Gondwana. In Proterozoic East Gondwana; supercontinent assembly and breakup (eds Yoshida, M., Windley, B. F. & Dasgupta, S.), pp. 289–325. Geological Society of London, Special Publication no. 206.Google Scholar
Katz, O., Avigad, D., Matthews, A. & Heimann, A. 1998. Precambrian metamorphic evolution of the Arabian–Nubian Shield in the Roded area, southern Israel. Israel Journal of Earth Sciences 47, 93110.Google Scholar
Katzir, Y., Eyal, M., Litvinovsky, B. A., Jahn, B. M., Zanvilevich, A. N., Valley, J. W., Beeri, Y., Pelei, I. & Shimshilashvili, E. 2007 a. Petrogenesis of A-type granites and origin of vertical zoning in the Katharina pluton, area of Gebel Mussa (Mt. Moses), Sinai, Egypt. Lithos 95, 208–28.CrossRefGoogle Scholar
Katzir, Y., Litvinovsky, B., Eyal, M., Zanvilevich, A. N. & Vapnik, Ye. 2006. Four successive episodes of Late Pan-African dikes in the central Elat area, southern Israel. Israel Journal of Earth Sciences 55, 6993.CrossRefGoogle Scholar
Katzir, Y., Litvinovsky, B., Jahn, B. M., Eyal, M., Zanvilevich, A. N., Valley, J. W., Vapnik, Ye., Beeri, Y. & Spicuzza, M. J. 2007 b. Interrelations between coeval mafic and A-type silicic magmas from composite dykes in a bimodal suite of southern Israel, Northernmost Arabian–Nubian Shield: Geochemical and isotope constraints. Lithos 97, 336–64.CrossRefGoogle Scholar
Kessel, R., Stein, M. & Navon, O. 1998. Petrogenesis of Late Neoproterozoic dikes in the Northern Arabian–Nubian Shield: implications for the origin of A-type granites. Precambrian Research 92, 195213.CrossRefGoogle Scholar
King, E. M. & Valley, J. W. 2001. Oxygen isotope study of magmatic source, assimilation and alteration in the Idaho batholith. Contributions to Mineralogy and Petrology 142, 7288.CrossRefGoogle Scholar
King, E. M., Valley, J. W., Davis, D. W. & Edwards, G. R. 1998. Oxygen isotope ratios of Archean plutonic zircons from granite–greenstone belts of the Superior Province: indicator of magmatic source. Precambrian Research 92, 365–87.CrossRefGoogle Scholar
King, E. M., Valley, J. W., Davis, D. W. & Kowallis, B. J. 2001. Empirical determination of oxygen isotope fractionation factors for titanite with respect to zircon and quartz. Geochimica et Cosmochimica Acta 65, 3165–75.CrossRefGoogle Scholar
Kohn, B. P., Eyal, M. & Feinstein, S. 1992. A major Late Devonian–Early Carboniferous thermotectonic event at the NW margin of the Arabian–Nubian Shield: evidence from zircon fission track dating. Tectonics 11, 1018–27.CrossRefGoogle Scholar
Kohn, M. J. & Valley, J. W. 1998. Oxygen isotope geochemistry of the amphiboles: isotope effects of cation substitutions in minerals. Geochimica et Cosmochimica Acta 62, 1947–58.CrossRefGoogle Scholar
Kröner, A., Eyal, M. & Eyal, Y. 1990. Early Pan-African evolution of the basement around Elat, Israel, and the Sinai Peninsula revealed by single-zircon evaporation dating, and implications for crustal accretion rates. Geology 18, 545–8.2.3.CO;2>CrossRefGoogle Scholar
Loiselle, M. C. & Wones, D. R. 1979. Characteristics and origin of anorogenic granites. Geological Society of America, Abstracts and Program 11, 468.Google Scholar
Marco, S., Ron, H., Matthews, A., Beyth, M. & Navon, O. 1993. Chemical remanent magnetism related to the Dead Sea rift: Evidence from Precambrian igneous rocks of Timna, southern Israel. Journal of Geophysical Research 98, 16001–12.CrossRefGoogle Scholar
Mattey, D. P., Lowry, D. & Macpherson, C. G. 1994. Oxygen isotope composition of the mantle. Earth and Planetary Science Letters 128, 231–41.CrossRefGoogle Scholar
Mattey, D. P., Lowry, D., Macpherson, C. G. & Chazot, G. 1994. Oxygen isotope composition of mantle minerals by laser fluorination analysis: homogeneity in peridotites, heterogeneity in eclogites. Mineralogical Magazine 58, 573–4.CrossRefGoogle Scholar
Matthews, A., Ayalon, A., Ziv, A. & Shaked, J. 1999. Hydrogen and oxygen isotope studies of alteration in the Timna igneous complex. Israel Journal of Earth Sciences 48, 121–31.Google Scholar
Meert, J. G. 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362, 140.CrossRefGoogle Scholar
Mushkin, A., Navon, O., Halicz, L., Hartmann, G. & Stein, M. 2003. The petrogenesis of A-type magmas from the Amram Massif, southern Israel. Journal of Petrology 44, 815–32.CrossRefGoogle Scholar
Mushkin, A., Navon, O., Halicz, L., Heimann, A., Woerner, G. & Stein, M. 1999. Geology and geochronology of the Amram Massif, Southern Negev desert, Israel. Israel Journal of Earth Sciences 48, 179–93.Google Scholar
Page, F. Z., Ushikubo, T., Kita, N. T., Riciputi, L. R. & Valley, J. W. 2007. High-precision oxygen isotope analysis of picogram samples reveals 2 μm gradients and slow diffusion in zircon. American Mineralogist 92, 1772–5.CrossRefGoogle Scholar
Peck, W. H., King, E. M. & Valley, J. W. 2000. Oxygen isotope perspective on Precambrian crustal growth and maturation. Geology 28, 363–6.2.0.CO;2>CrossRefGoogle Scholar
Pollack, H. M. 1986. Cratonization and thermal evolution of the mantle. Earth and Planetary Science Letters 80, 175–82.CrossRefGoogle Scholar
Segev, A., Goldshmidt, V. & Rybakov, M. 1999. Late Precambrian–Cambrian tectonic setting of the crystalline basement in the northern Arabian–Nubian Shield as derived from gravity and magnetic data: Basin-and-range characteristics. Israel Journal of Earth Sciences 48, 159–78.Google Scholar
Shpitzer, M., Beyth, M. & Matthews, A. 1992. Igneous differentiation in the Late Precambrian plutonic rocks of Mt. Timna. Israel Journal of Earth Sciences 40, 1727.Google Scholar
Spicuzza, M. J., Valley, J. W, Kohn, M. J., Girard, J. P. & Fouillac, A. M. 1998. The rapid heating, defocused beam technique: a CO2-laser-based method for highly precise and accurate determination of δ18O values of quartz. Chemical Geology 144, 195203.CrossRefGoogle Scholar
Spicuzza, M. J., Valley, J. W. & McConnell, V. S. 1998. Oxygen isotope analysis of whole rock via laser fluorination: an air-lock approach. Geological Society of America, Annual Meeting, Abstracts with Program 30, 80.Google Scholar
Stein, M. 2003. Tracing the plume material in the Arabian–Nubian Shield. Precambrian Research 123, 223–34.CrossRefGoogle Scholar
Stein, M. & Goldstein, S. L. 1996. From plume head to continental lithosphere in the Arabian–Nubian shield. Nature 382, 773–8.CrossRefGoogle Scholar
Stein, M. & Hoffmann, A. W. 1992. Fossil plume head beneath the Arabian Lithosphere? Earth and Planetary Science Letters 114, 193203.CrossRefGoogle Scholar
Stern, R. J. 1994. Arc assembly and continental collision in the Neoproterozoic East African orogen. Implications for the consolidation of Gondwanaland. Annual Review of Earth and Planet Sciences 22, 319–51.CrossRefGoogle Scholar
Stern, R. J. 2002. Crustal evolution in the East African Orogen: a neodymium isotopic perspective. Journal of African Earth Sciences 34, 109–17.CrossRefGoogle Scholar
Stern, R. J. & Abdelsalam, M. G. 1998. Formation of continental crust in the Arabian–Nubian Shield: evidence from granitic rocks of the Nakasib suture, NE Sudan. Geologische Rundschau 87, 150–60.CrossRefGoogle Scholar
Stern, R. J. & Gottfried, D. 1986. Petrogenesis of the Late Precambrian (575–600 Ma) bimodal suite in northeast Africa. Contributions to Mineralogy and Petrology 24, 492501.CrossRefGoogle Scholar
Stern, R. J. & Kröner, A. 1993. Late Precambrian crustal evolution in NE Sudan, isotopic and geochronologic constraints. Journal of Geology 101, 555–74.CrossRefGoogle Scholar
Stern, R. J., Sellers, G. & Gottfried, D. 1988. Bimodal dike swarms in the north of the Eastern Desert of Egypt: Significance for the origin of the Precambrian “A-type” Granites in Northern Afro-Arabia. In The Pan-African Belt of NE Africa and Adjacent Areas: Tectonic Evolution and Economic Aspects (eds Greiling, R. & Gaby, R.), pp. 147–79. Braunschweig, Germany: Frieder, Vieweg and Sohn.Google Scholar
Stoeser, D. B. & Camp, V. E. 1985. Pan-African microplate accretion of the Arabian shield. Geological Society of America Bulletin 96, 817–26.2.0.CO;2>CrossRefGoogle Scholar
Taylor, H. P. Jr. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology 69, 843–83.CrossRefGoogle Scholar
Turner, S. P., Foden, J. D. & Morrison, R. S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, south Australia. Lithos 28, 151–79.CrossRefGoogle Scholar
Valley, J. W. 2001. Stable isotope thermometry at high temperatures. In Stable Isotope Geochemistry (eds Valley, J. W. & Cole, D. R.), pp. 365–91. Reviews in Mineralogy and Geochemistry 43. Washington DC: Mineralogical Society of America.CrossRefGoogle Scholar
Valley, J. W. 2003. Oxygen isotopes in zircon. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 343–86. Reviews in Mineralogy and Geochemistry 53. Washington DC: Mineralogical Society of America.CrossRefGoogle Scholar
Valley, J. W., Bindeman, I. N. & Peck, W. H. 2003. Empirical calibration of oxygen isotope fractionation in zircon. Geochimica et Cosmochimica Acta 67, 3257–66.CrossRefGoogle Scholar
Valley, J. W., Chiarenzelli, J. R. & McLelland, J. M. 1994. Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters 126, 187206.CrossRefGoogle Scholar
Valley, J. W., Kinny, P. D., Schulze, D. J. & Spicuzza, M. J. 1998. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology 133, 111.CrossRefGoogle Scholar
Valley, J. W., Kitchen, N., Kohn, M. J., Niendorf, C. R. & Spicuzza, M. J. 1995. UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating. Geochimica et Cosmochimica Acta 59, 5523–31.CrossRefGoogle Scholar
Valley, J. W., Lackey, J. S., Cavosie, A. J., Clechenko, C. C., Spicuzza, M. J., Basei, M. A. S., Bindeman, I. N., Ferreira, V. P., Sial, A. N., King, E. M., Peck, W. H., Sinha, A. K. & Wei, C. S. 2005. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contribution to Mineralogy and Petrology 150, 561–80.CrossRefGoogle Scholar
Von Blankenburg, F. 1992. Combined high-precision chronometry and geochemical tracing using accretionary minerals: applied to the Central-Alpine Bergel intrusion (central Europe). Chemical Geology 100, 1940.CrossRefGoogle Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.CrossRefGoogle Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.CrossRefGoogle Scholar
Whalen, J. B., Jenner, G. A., Currie, K. L., Barr, S. M., Longstaffe, F. J. & Hegner, E. 1994. Geochemical and isotopic characteristics of granitoids of the Avalon Zone, Southern New Brunswick: possible evidence for repeated delamination events. Geology 102, 269–72.Google Scholar
Whalen, J. B., Jenner, G. A., Longstaffe, F. J., Robert, F. & Gariepy, C. 1996. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. Journal of Petrology 37, 1463–89.CrossRefGoogle Scholar
Windley, B. F. 1993. Proterozoic anorogenic magmatism and its orogenic connections. Journal of the Geological Society, London 150, 3950.CrossRefGoogle Scholar
Supplementary material: File

Steinitz Supplementary Material

Appendix.doc

Download Steinitz Supplementary Material(File)
File 100.9 KB