Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T14:32:59.508Z Has data issue: false hasContentIssue false

Mylonitic mafic granulite in fault megabreccia at Clarke Head, Nova Scotia: a sample of Avalonian lower crust?

Published online by Cambridge University Press:  01 May 2009

Wes Gibbons
Affiliation:
Department of Earth Sciences, University of Wales, Cardiff, Wales CF1 3 YE, UK
J. Brendan Murphy
Affiliation:
Department of Geology, St Francis Xavier University, Nova Scotia B2G ICO, Canada

Abstract

The Clarke Head fault megabreccia was produced within a major Late Palaeozoic transcurrent structure (the Minas fault system) which separates the displaced Meguma terrane of southern Nova Scotia from rocks more typical of the Avalon Superterrane. A large clast of anomalously high grade metabasite embedded in the clay matrix of the fault megabreccia displays a fresh granulite facies mineralogy (2-pyroxene + garnet + plagioclase) and mylonitic to ultramylonitic textures induced by anhydrous shearing deep in the roots of the fault zone. Whole rock geochemistry reveals the granulite protolith to have been a continental, within-plate mafic magma transitional between theoleiitic and alkaline. The original geochemical signature has survived strong dynamic recrystallization at granulite grade. Well-preserved REE abundances testify to a lack of metasomatic fractionation during high grade shearing under water-absent conditions. Sm—Nd data indicate that the basic granulite has a TDM age of c. 1 Ga. Isotopic comparisons with adjacent areas reveal similar TDM ages both north and south of the Minas fault system. The high grade clast may be typical of the lower crust in Nova Scotia and is thought to offer a rare window into the deep crust of the Avalon Superterrane in North America.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegre, C. J., & Rousseau, D., 1984. The growth of the continents through geological time studied by the Nd isotopic analysis of shales. Earth and Planetary Science Letters 67, 1934.Google Scholar
Ben Othman, D., Polve, M., & Allegre, C. J., 1984. Nd-Sr isotopic composition on granulites and constraints on the evolution of the lower continental crust. Nature 307, 510–15.Google Scholar
Clarke, D. B., Chatterjee, A. K., & Giles, P. S., 1993. Petrochemistry, tectonic history, and Sr-Nd systematics of the Liscomb Complex, Meguma Lithotectonic Zone, Nova Scotia. Canadian Journal of Earth Sciences 30, 449–64.Google Scholar
Clague, D. A., 1987. Hawaiian alkaline volcanism. In Alkaline Igneous Rocks (eds. Fitton, J. G. and Upton, B. G. J.), pp. 227–52. Geological Society of London Special Publication no. 30.Google Scholar
DePaolo, D. J., 1981 a. Neodymium isotopes in the Colorado Front range and crust-mantle evolution in the Proterozoic. Nature 291, 193–6.Google Scholar
DePaolo, D. J., 1981 b. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189202.Google Scholar
Donohoe, H. V. Jr, Piper, D. J. W., Pe-Piper, G., Murphy, J. B., & Nance, D., 1992. Cobequid Highlands, Nova Scotia: the interplay of episodic magmatism, volcanism, and ductile/brittle strain. Atlantic Geoscience Society Field Excursion Guidebook C-2, 25 pp.Google Scholar
Donohoe, H. V., & Wallace, P. I., 1985. Repealed orogeny, faulting and stratigraphy of the Cobequid Highlands, Avalon Terrane of northern Nova Scotia. Geological Association of Canada-Mineralogical Association of Canada Joint Annual Meeting, Guidebook 3, Fredericton, New Brunswick, 77 pp.Google Scholar
Donohoe, H. V., & Wallace, P. I., 1988. Movement history of the Cobequid fault zone, Cobequid Highlands, northern Nova Scotia (abstract). Maritime Sediments and Atlantic Geology 24, 191–2.Google Scholar
Eisbacher, G. H., 1969. Displacement and stress field along part of the Cobequid fault, Nova Scotia. Canadian Journal of Earth Sciences 6, 10951104.Google Scholar
Gibbons, W., 1987. Menai Strait fault system: An early Caledonian terrane boundary in North Wales. Geology 15, 744.Google Scholar
Gibbons, W., 1990. Transcurrent ductile shear zones and the dispersal of the Avalonian superterrane. In The Cadomian Orogeny (eds D’Lemos, R. S. Strachan, R. A. and Topley, C. G.), pp. 407–23. Special Publication of the Geological Society of London no. 51.Google Scholar
Gibbons, W., 1994. Suspect Terranes. In Continental Deformation (ed. Hancock, P. L.), pp. 305–19. Pergamon Press.Google Scholar
Giles, P. S., & Chatterjee, A. K., 1986. Peraluminous granites of the Liscomb Complex. Nova Scotia Department of Mines and Energy, Tenth Annual Open House and Review of Activities, Program and Summaries. Information Series 12, 8389.Google Scholar
Goldstein, S. L., O’Nions, R. K., & Hamilton, P. J., 1984. A Sm-Nd study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters 70, 221–36.Google Scholar
Grauch, R. I., 1989. Rare earth elements in metamorphic rocks. In Geochemistry and Mineralogy of Rare Earth Elements (eds Lipin, B. R, and McKay, G. A.), pp. 147–67. Mineralogical Society of America Reviews in Mineralogy no. 21.CrossRefGoogle Scholar
Green, T. H., Brunfelt, A. O., & Heier, K. S., 1972. Rareearth element distribution and K/Rb ratios in granulites, mangerites, and anorthosites, Lofoten-Vesteraalen, Norway. Geochimica et Cosmochimica Acta 36, 241–57.CrossRefGoogle Scholar
Hill, J. D., 1991. Petrology, tectonic setting, and economic potential of Devonian peraluminous granitoid plutons in the Canso and Forest Hill areas, eastern Meguma terrane, Nova Scotia. Geological Survey of Canada Bulletin no. 383, 96 pp.Google Scholar
Jahn, B., & Zhang, Z., 1984. Archean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology 85, 224–43.CrossRefGoogle Scholar
Jacobsen, S. B., & Wasserburg, G. J., 1980. Sm-Nd evolution of chondrites. Earth and Planetary Science Letters 50, 139–5.Google Scholar
Keen, C. E., Kay, W. A., Keppie, D., Marillier, F., Pepiper, G., & Waldron, J. W. F., 1991. Deep seismic reflection data from the Bay of Fundy and Gulf of Maine: tectonic implications for the northern Appalachians. Canadian Journal of Earth Sciences 28, 10961111.CrossRefGoogle Scholar
Keppie, J. D., 1982. The Minas Geofracture. In Major Structural Zones and Faults of the Northern Appalachians (eds St-Julien, P. and Béland, J.), pp. 263–80. Geological Association of Canada Special Paper no. 24.Google Scholar
Irvine, T. N., & Barager, W. R. A., 1971. A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.Google Scholar
Keppie, J. D., 1985. The Appalachian Collage. In The Caledonide Orogen: Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.), pp. 1217–26. J. Wiley.Google Scholar
Keppie, J. D., & Dallmeyer, R. D., 1987. Dating transcurrent terrane accretion: an example from the Meguma and Avalon composite terranes in the northern Appalachians. Tectonics 6, 831–47.Google Scholar
Keppie, J. D., & Muecke, G. K., (compilers). Metamorphic map of Nova Scotia, 1:1,000,000. Nova Scotia Department of Mines and Energy, Halifax, Nova Scotia.Google Scholar
Keppie, J. D., Nance, R. D., Murphy, J. B., & Dostal, J., 1991. Northern Appalachians: Avalon and Meguma terranes. In Tectonothermal Evolution of the West African Orogens and Circum-Atlantic Correlatives (eds Dallmeyer, R. D. and Lecorche, J. P.), pp. 298315. Heidelburg: Springer-Verlag.Google Scholar
Liew, T. C., & McCulloch, M. T., 1985. Genesis of granitoid batholiths of Peninsular Malaysia and implications for modes of crustal evolution: Evidence from a Nd-Sr isotopic and U-Pb lead study. Geochimica et Cosmochimica Ada 49, 587600.Google Scholar
Mawer, C. K., & White, J. C., 1987. Sense of displacement on the Cobequid-Chedabucto fault system, Nova Scotia, Canada. Canadian Journal of Earth Sciences 24, 217–23.Google Scholar
McKerrow, W. S., Scotese, C. R., & Brasier, M. D., 1992. Early Cambrian continental reconstructions. Journal of the Geological Society, London 149, 599606.Google Scholar
Miller, B. V., Nance, R. D., & Murphy, B. J., 1989. Preliminary kinematic analysis of the Rockland Brook fault, Cobequid Highlands, Nova Scotia. Current Research, Part B, Geological Survey of Canada, Paper 89–1B, 714.Google Scholar
Murphy, J. B., 1987. Late Precambrian to Late Devonian mafic magmatism in the Antigonish Highlands of Nova Scotia: multistage melting of a hydrated mantle. Canadian Journal of Earth Sciences 25, 473–85.Google Scholar
Murphy, J. B., Keppie, J. D., Nance, R. D., & Dostal, J., 1990. The Avalon composite terrane of Nova Scotia. In Avalonian and Cadomian Geology of the North Atlantic (eds Strachan, R. A. and Taylor, G. K.), pp. 195213. Glasgow: Blackie.Google Scholar
Murphy, J. B., & MacDonald, D. L., 1993. Geochemistry and tectonic discrimination of Late Proterozoic arcrelated volcaniclastic turbidite sequences, Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences 30, 2273–82.Google Scholar
Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta 38, 757–75.CrossRefGoogle Scholar
Nance, R. D., & Murphy, J. B., 1994. Contrasting basement isotopic signatures and palinspastic restoration of peripheral orogens: example from the neoproterozoic Avalonian-Cadomian belt. Geology 22, 617–20.2.3.CO;2>CrossRefGoogle Scholar
Nelson, B. K., & De Paolo, D. J., 1984. 1,700 Ma greenstone volcanic successions in southwestern North America and isotopic evolution of Proterozoic mantle. Nature 312, 143–6.CrossRefGoogle Scholar
Pearce, J. A., 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. and Norry, M. J.), pp. 230–49. Shiva Geology Series.Google Scholar
Pearce, J. A., & Cann, J. R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters 19, 290300.CrossRefGoogle Scholar
Pearce, J. A., & Norry, M. J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.Google Scholar
Pe-Piper, G., & Turner, D. S., 1988. The Harma Farm Pluton, Cobequid Highlands: petrology and significance for motion on the Kirkhill fault. Maritime Sediments and Atlantic Geology 24, 171–84.Google Scholar
Sivell, W. J., 1986. A basaltic-ferrobasaltic granulite association, Oonagalbi gneiss complex, Central Australia: magmatic variation in an Early Proterozoic rift. Contributions to Mineralogy and Petrology 93, 381–94.Google Scholar
Sun, S. S., 1982. Chemical composition and origin of the earth’s primitive mantle. Geochimica et Cosmochimica Acta 46, 179–92.Google Scholar
Theokritoff, G., 1979. Early Cambrian provincialism and biogeographic boundaries in the North Atlantic region. Lethaia 12, 281–95.Google Scholar
Waldron, J. W. F., Piper, D. J. W., & Pe-Piper, G., 1989. Deformation of the Cape Chignecto Pluton, Cobequid Highlands, Nova Scotia: thrusting at the Meguma-Avalon boundary. Atlantic Geology 25, 5162.Google Scholar
Weaver, B. L., 1980. Rare-earth element geochemistry of Madras granulites. Contributions to Mineralogy and Petrology 71, 271–9.Google Scholar
Weaver, B. L., & Tarney, J., 1980. Rare earth geochemistry of Lewisian granulite facies gneisses, northwest Scotland: implications for the petrogenesis of the Archeaen lower continental crust. Earth and Planetary Science Letters 51, 279–96.Google Scholar
Webb, G. W., 1969. Paleozoic wrench faults in Canadian Appalachians. American Association Petroleum Geologists Memoir 12, 754–86.Google Scholar
Williams, H., & Hatcher, R. D. Jr, 1982. Suspect terranes and the accretionary history of the Appalachian Orogen. Geology 10, 530–6.Google Scholar
Yeo, G., & Gao, R.-X., 1987. Stellarton graben: an upper Carboniferous pull-apart basin in northern Nova Scotia. In Sedimentary Basins and Basin-Forming Mechanisms (eds Beaumont, C. and Tankard, A. J.), pp. 299309. Canadian Society of Petroleum Geologists Memoir no. 12.Google Scholar