Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T11:31:49.409Z Has data issue: false hasContentIssue false

Messorocaris, a new sanctacaridid-like arthropod from the middle Cambrian Wheeler Formation (Utah, USA)

Published online by Cambridge University Press:  29 June 2017

RUDY LEROSEY-AUBRIL*
Affiliation:
Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia. Orcid ID: 0000-0003-2256-1872
JACOB SKABELUND
Affiliation:
10496 Raining Sky Street, Las Vegas, NV 89178, USA.
*
Author for correspondence: leroseyaubril@gmail.com

Abstract

The Drumian Wheeler Formation preserves one of the most diverse exceptionally preserved faunas of the Cambrian period. Here we describe Messorocaris magna gen. et sp. nov., a new non-biomineralizing arthropod from this formation tentatively assigned to the family Sanctacarididae. The new taxon exhibits a vaulted axial region, and wide pleural regions forming sickle-shaped lateral extensions in the trunk, a character particularly distinctive within the Sanctacarididae. This description provides an opportunity to stress the fact that the ‘Wheeler fauna’ encompasses two distinct assemblages, as confirmed by similarity analysis. These contemporaneous faunas lived at different bathymetries, and should be treated as separate entities.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brett, C. E., Allison, P. A., DeSantis, M. K., Liddell, W. D. & Kramer, A. 2009. Sequence stratigraphy, cyclic facies, and lagerstätten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology 277, 933.Google Scholar
Briggs, D. E. G. & Collins, D. 1988. A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology 31, 779–98.Google Scholar
Briggs, D. E. G., Lieberman, B. S., Hendricks, J. R., Halgedahl, S. L. & Jarrard, R. D. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology 82, 238–54.CrossRefGoogle Scholar
Conway Morris, S. & Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. The University of Kansas Paleontological Contribution 122, 148.Google Scholar
Conway Morris, S., Selden, P. A., Gunther, G., Jamison, P. G. & Robison, R. A. 2015. New records of Burgess Shale-type taxa from the middle Cambrian of Utah. Journal of Paleontology 89, 411–23.CrossRefGoogle Scholar
Foster, J. R. & Gaines, R. R. 2016. Taphonomy and Paleoecology of the “Middle” Cambrian (Series 3) Formations in Utah's West Desert: recent finds and new data. In Resources and Geology of Utah's West Desert (eds Comer, J. B., Inkenbrandt, P. C., Krahulec, K. A. & Pinnell, M. L.), pp. 291336. Utah Geological Association, Publication 45.Google Scholar
Gaines, R. R. 2014. Burgess shale-type preservation and its distribution in space and time. In Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization (eds Laflamme, M., Schiffbauer, J. D. & Darroch, S. A. F.), pp. 123–46. The Paleontological Society Papers no. 20.Google Scholar
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4 (1), 19.Google Scholar
Heymons, R. 1901. Die Entwicklungsgeschichte der Scolopender. Zoologica 13, 1244.Google Scholar
Hu, S., Zhu, M., Luo, H., Steiner, M., Zhao, F., Li, G., Liu, Q. & Zhang, Z. 2013. The Guanshan Biota. Kunming: Yunnan Publishing Group and Yunnan Science and Technology Press.Google Scholar
Jago, J. B., Garcia-Bellído, D. C. & Gehling, J. G. 2016. An early Cambrian chelicerate from the Emu Bay Shale, South Australia. Palaeontology 59, 549–62.Google Scholar
Lefebvre, B., El Hariri, K. Lerosey-Aubril, R., Servais, T. & Van Roy, P. 2016b. The Fezouata Shale (Lower Ordovician, Anti-Atlas, Morocco): a historical review. Palaeogeography, Palaeoclimatology, Palaeoecology 460, 723.Google Scholar
Lefebvre, B., Lerosey-Aubril, R., Servais, T. & Van Roy, P. 2016a. The Fezouata Biota: an exceptional window on the Cambro-Ordovician faunal transition – Preface. Palaeogeography, Palaeoclimatology, Palaeoecology 460, 16. doi: 10.1016/j.palaeo.2016.06.041.Google Scholar
Legg, D. A. 2014. Sanctacaris uncata; the oldest chelicerate (Arthropoda). Naturwissenschaften 101, 1065–73.Google Scholar
Legg, D. A. & Pates, S. 2017. A restudy of Utahcaris orion (Euarthropoda) from the Spence Shale (Middle Cambrian, Utah, USA). Geological Magazine 154, 181–6. doi: 10.1017/S0016756816000789.CrossRefGoogle Scholar
Lerosey-Aubril, R., Hegna, T. A., Babcock, L. E., Bonino, E. & Kier, C. 2014. Arthropod appendages from the Weeks Formation Konservat-Lagerstätte: new occurrences of anomalocaridids in the Cambrian of Utah, USA. Bulletin of Geosciences 89, 269–82.Google Scholar
Miller, J. F., Evans, K. R. & Dattilo, B. F. 2012. The Great American Carbonate Bank in the miogeocline of western central Utah: tectonic influences on sedimentation. In The Great American Carbonate Bank: The Geology and Economic Resources of the Cambro-Ordovician Sauk Sequence of Laurentia (eds Derby, J. R., Fritz, R., Longacre, S.A., Morgan, W. & Sternbach, C.), pp. 769854. American Association of Petroleum Geologists, Memoir no. 98.Google Scholar
Ortega-Hernández, J. 2016. Making sense of ‘lower’ and ‘upper’ stem-group Euarthropoda, with comments on the strict use of the name Arthropoda von Siebold, 1848. Biological Reviews 91, 255–73.CrossRefGoogle ScholarPubMed
Rees, M. N. 1986. A fault-controlled trough through a carbonate platform: the Middle Cambrian House Range embayment. Bulletin of the Geological Society of America 97, 1054–69.Google Scholar
Robison, R. A. 1991. Middle Cambrian biotic diversity: examples from four Utah Lagerstätten. In The Early Evolution of Metazoa and the Significance of Problematic Taxa (eds Simonetta, A. M. & Conway-Morris, S.), pp. 7798. Cambridge: Cambridge University Press.Google Scholar
Robison, R. A. & Babcock, L. E. 2011. Systematics, paleobiology, and taphonomy of some exceptionally preserved trilobites from Cambrian Lagerstätten of Utah. Kansas University Paleontological Contributions 5, 147.Google Scholar
Robison, R. A., Babcock, L. E. & Gunther, V. G. 2015. Exceptional Cambrian fossils from Utah: a window into the age of trilobites. Miscellaneous Publication 15-1. Utah Geological Survey, Salt Lake City, 97 pp.Google Scholar
Van Roy, P., Briggs, D. E. G. & Gaines, R. R. 2015. The Fezouata fossils of Morocco: an extraordinary record of marine life in the Early Ordovician. Journal of the Geological Society 172, 541–9.Google Scholar
von Siebold, C.T. 1848. Lehrbuch der vergleichenden Anatomie der Wirbellosen Thiere. Erster Theil. In Lehrbuch der Vergleichenden Anatomie (eds. von Siebold, C. T. & Stannius, H.), 1679. Berlin: Verlag von Veit & Company.Google Scholar
Zhao, Y., Zhu, M., Babcock, L. E. & Peng, J. 2011. The Kaili Biota: Marine Organisms from 508 Million Years Ago. Guiyang: Guizhou Publishing Group.Google Scholar