Hostname: page-component-6d856f89d9-4thr5 Total loading time: 0 Render date: 2024-07-16T07:03:10.474Z Has data issue: false hasContentIssue false

Mélange within subduction–accretion complex rocks of Fredriksen Island, South Orkney Islands

Published online by Cambridge University Press:  01 May 2009

B. C. Storey
Affiliation:
British Antarctic Survey, High Cross Madingley Road Cambridge, CB3 0ET, U.K.
A. W. Meneilly
Affiliation:
British Antarctic Survey, High Cross Madingley Road Cambridge, CB3 0ET, U.K.

Abstract

Summary. A m´lange on Fredriksen Island, South Orkney Islands, is part of a Mesozoic subduction- accretion complex which formed along the western, Pacific side of Gondwana. It consists of a chaotic arrangement of irregular sized blocks, up to 8 m across, of basic pillow lava, chert, felsite and epiclastic sandstone in a pervasively sheared cataclastic matrix. Inclusions are typically lozenge-shaped and are characteristic of a tectonic m´lange. As the m´lange incorporates both possible ocean floor material that was accreted on to the continental margin and inner slope basin sediments it probably formed beneath the trench-slope basin along a shear zone at a high level in the subduction complex.

Type
Articles
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aalto, K. R. 1982. The Franciscan Complex of northernmost California: sedimentation and tectonics. In Trench-forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins (ed. Leggett, J. K.), pp. 419–32. Oxford, London, Edinburgh, Boston, Melbourne: Blackwell Scientific Publications.Google Scholar
Bachman, S. B. 1982. The coastal belt of the Franciscan: youngest phase of northern California subduction. In Trench-forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins (ed. Leggett, J. K.), pp. 401–17. Oxford, London, Edinburgh, Boston, Melbourne: Blackwell Scientific Publications.Google Scholar
Barker, P. F., Dalziel, I. W. D. & others. 1976. The evolution of the south eastern Atlantic Ocean Basin: Results of Leg 36, Deep Sea Drilling Project. In Initial Reports of Deep Sea Drilling Project, vol. 36 (ed. Barker, P. F., Dalziel, I. W. D. et al.), pp. 9931014. Washington D.C.: U.S. Government Printing Office.Google Scholar
British Antarctic Survey Geological Map Series BAS 500G. (In the press.) Sheet 1. South Orkney Islands, with South Georgia and South Sandwich Islands. 1:500 000. Geology compiled by J. W. Thomson and J. S. Harris.Google Scholar
Burn, R. W. (In the press.) The geology of the LeMay Group, Alexander Island. Sci. Rep. Br. Antarct. Surv.Google Scholar
Cowan, D. S. 1982. Deformation of partly dewatered and consolidated Franciscan sediments near Piedras Blancas Point, California. In Trench-forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins (ed. Leggett, J. K.), pp. 439–57. Oxford, London, Edinburgh, Boston, Melbourne: Blackwell Scientific Publications.Google Scholar
Dalziel, I. W. D. 1982. The early (pre-middle Jurassic) history of the Scotia Arc Region: a review and progress report. In Antarctic Geoscience (ed. C., Craddock), pp. 111–26. Madison: University of Wisconsin Press.Google Scholar
Dalziel, I. W. D. (in prep.) Tectonic evolution of a forearc terrane and of the southern Scotia Ridge, Antarctica. J. geol. Soc. Lond.Google Scholar
Dalziel, I. W. D. & Elliot, D. H. 1973. The Scotia Arc and Antarctic margin. In The Ocean Basins and Their Margins, vol. 1. The South Atlantic (ed. Stehli, F. G. and Nairn, A. E. M.), pp. 171246. New York: Plenum.Google Scholar
Dalziel, I. W. D., Elliot, D. H., Thomson, J. W., Thomson, M. R. A., Wells, N. A. & Zinsmeister, W. J. 1977. Geological studies in the South Orkney Islands: R/V Hero Cruise 77–1, January 1977. Antarct. J. U. S. 12, 98101.Google Scholar
Dalziel, I. W. D., Elliot, D. H., Jones, D. L., Thomson, J. W., Thomson, M. R. A., Wells, N. A. & Zinsmeister, W. J. 1981. The geological significance of some Triassic microfossils from the South Orkney Islands, Scotia Ridge. Geol. Mag. 118, 1525.CrossRefGoogle Scholar
De Wit, M. J. 1977. The evolution of the Scotia arc as a key to the reconstruction of southwestern Gondwanaland. Tectonophysics 37, 5381.CrossRefGoogle Scholar
De Wit, M. J., Dutch, S., Kligfield, R., Allen, R. & Stern, C. 1977. Deformation, serpentinization and emplacement of a dunite complex, Gibbs Island, South Shetland Islands: possible fracture zone tectonics. J. Geol. 85, 745–62.CrossRefGoogle Scholar
Dickinson, W. R. & Seely, D. R. 1979. Structure and stratigraphy of forearc regions. Bull. Am. Assoc. Petrol. Geol. 63, 231.Google Scholar
Elliot, D. H. 1975. Tectonics of Antarctica: a review. Am. J. Sci. A 275, 45106.Google Scholar
Hamilton, W. 1977. Subduction in the Indonesian region. In Island Arcs, Deep Sea Trenches and Back-arc Basins (ed. M., Talwani and Pitman, W. C.), pp. 1532. Washington: American Geophysical Union.CrossRefGoogle Scholar
Hsü, K. 1974. M´langes and their distinction from olistostromes. In Modern and Ancient Geosynclinal Sedimentation (ed. Dott, R. H. and Shaver, R. H.), pp. 321–32. Soc. Econ. Paleontologists and Mineralogists Spec. Pub. 19.CrossRefGoogle Scholar
Hyden, G. & Tanner, P. W. G. 1981. Late Palaeozoic-early Mesozoic fore-arc basin sedimentary rocks at the Pacific margin in western Antarctic. Geol. Rdsch. 70, 529–41.CrossRefGoogle Scholar
Karig, D. E. & Sharman, G. F. 1975. Subduction and accretion in trenches. Bull. geol. Soc. Am. 86, 377–89.2.0.CO;2>CrossRefGoogle Scholar
Karig, D. E., Lawrence, M. B., Moore, G. F. & Curray, J. R. 1980. Structural framework of the forearc basin, NW Sumatra. J. geol. Soc. Lond. 137, 7791.CrossRefGoogle Scholar
Moore, J. C. & Karig, D. E. 1980. Structural geology of Nias Island: implications for subduction zone tectonics. Am. J. Sci. 280, 193223.CrossRefGoogle Scholar
Nelson, K. D. 1982. A suggestion for the origin of mesoscopic fabric in accretionary m´lange, based on features observed in the Chrystalls Beach Complex, South Island, New Zealand. Bull. geol. Soc. Am. 93, 625–34.2.0.CO;2>CrossRefGoogle Scholar
Platt, J. P. & Vissers, R. L. M. 1980. Extensional structures in anisotropic rocks. J. Struct. Geol. 2, 397410.CrossRefGoogle Scholar
Silver, E. A. & Beutner, E. C. 1980. M´langes. Geology 8, 32–4.2.0.CO;2>CrossRefGoogle Scholar
Smellie, J. L. 1981. A complete arc-trench system recognized in Gondwana sequences of the Antarctic Peninsula region. Geol. Mag. 118, 139–59.CrossRefGoogle Scholar
Smellie, J. L. & Clarkson, P. D. 1975. Evidence for pre-Jurassic subduction in western Antarctica. Nature, Lond. 258, 701–2.CrossRefGoogle Scholar
Su´rez, M. 1976. Plate-tectonic model for southern Antarctic Peninsula and its relation to southern Andes. Geology 4, 211–14.2.0.CO;2>CrossRefGoogle Scholar
Tanner, P. W. G., Pankhurst, R. J. & Hyden, G. 1982. Radiometric evidence for the age of the subduction complex in the South Orkney and South Shetland Islands, west Antarctica. J. geol. Soc. Lond. 139, 683–90.CrossRefGoogle Scholar
Thomson, J. W. 1968. The geology of the South Orkney Islands. II. The petrology of Signy Island.Scient. Rep. Br. Antarct. Surv. no. 62.Google Scholar
Thomson, J. W. 1973. The geology of Powell, Christoffersen and Michelsen Islands, South Orkney Islands. Bull. Br. Antarct. Surv., nos 3334, 137–67.Google Scholar
Thomson, M. R. A. 1981. Late Mesozoic stratigraphy and invertebrate palaeontology of the South Orkney Islands. Bull. Br. Antarc. Surv., no. 54, 6583.Google Scholar
Tilley, C. E. 1935. Report on rocks from the South Orkney Islands. ‘Discovery’ Rep. 10, 383–90.Google Scholar