Skip to main content Accessibility help

Marine redox evolution in the early Cambrian Yangtze shelf margin area: evidence from trace elements, nitrogen and sulphur isotopes

  • GUANG-YI WEI (a1), HONG-FEI LING (a1), DA LI (a1), WEI WEI (a1), DAN WANG (a2), XI CHEN (a1), XIANG-KUN ZHU (a2), FEI-FEI ZHANG (a3) and BIN YAN (a2)...


Nitrogen is an essential element for biological activity, and nitrogen isotopic compositions of geological samples record information about both marine biological processes and environmental evolution. However, only a few studies of N isotopes in the early Cambrian have been published. In this study, we analysed nitrogen isotopic compositions, as well as trace elements and sulphur isotopic compositions of cherts, black shales, carbonaceous shales and argillaceous carbonates from the Daotuo drill core in Songtao County, NE Guizhou Province, China, to reconstruct the marine redox environment of both deep and surface seawater in the study area of the Yangtze shelf margin in the early Cambrian. The Mo–U covariation pattern of the studied samples indicates that the Yangtze shelf margin area was weakly restricted and connected to the open ocean through shallow water flows. Mo and U concentrations, δ15Nbulk and δ34Spy values of the studied samples from the Yangtze shelf margin area suggest ferruginous but not sulphidic seawater and low marine sulphate concentration (relatively deep chemocline) in the Cambrian Fortunian and early Stage 2; sulphidic conditions (shallow chemocline and anoxic photic zone) in the upper Cambrian Stage 2 and lower Stage 3; and the depression of sulphidic seawater in the middle and upper Cambrian Stage 3. Furthermore, the decreasing δ15N values indicate shrinking of the marine nitrate reservoir during the middle and upper Stage 3, which reflects a falling oxygenation level in this period. The environmental evolution was probably controlled by the changing biological activity through its feedback on the local marine environment.


Corresponding author

Author for correspondence:


Hide All
Ader, M., Sansjofre, P., Halverson, G. P., Busigny, V., Trindade, R. I. F., Kunzmann, M. & Nogueira, A. C. R. 2014. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: a nitrogen isotope perspective. Earth and Planetary Science Letters 396, 113.
Algeo, T. J., Luo, G. M., Song, H. Y., Lyons, T. W. & Canfield, D. E. 2015. Reconstruction of secular variation in seawater sulfate concentrations. Biogeosicences 12 (7), 2131–51.
Algeo, T. J. & Lyons, T. W. 2006. Mo–total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21 (1), PA1016. doi: 10.1029/2004PA001112.
Algeo, T. J. & Rowe, H. 2012. Paleoceanographic applications of trace-metal concentration data. Chemical Geology 324–325, 618.
Algeo, T. J. & Tribovillard, N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology 268 (3–4), 211–25.
Anbar, A. D. & Knoll, A. H. 2002. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297 (5584), 1137–42.
Berner, E. K. & Berner, R. 1996. Global environment: water, air and geochemical cycles. Upper Saddle River, NJ: Prentice Hall, 376 pp.
Calvert, S. 2004. Beware intercepts: interpreting compositional ratios in multi-component sediments and sedimentary rocks. Organic Geochemistry 35, 981–7.
Canfield, D. E. 2001. Biogeochemistry of sulfur isotopes. Stable Isotope Geochemistry 43, 607–36.
Canfield, D. E. 2004. The evolution of the earth surface sulfur reservoir. American Journal of Science 304, 839–61.
Canfield, D. E. 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences 33, 136.
Canfield, D. E., Poulton, S. W. & Narbonne, G. M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315 (5808), 92–5.
Chen, X., Ling, H. F., Vance, D., Shields-Zhou, G. A., Zhu, M. Y., Poulton, S. W., Och, L. M., Jiang, S. Y., Li, D., Cremonese, L. & Archer, C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications 6, 7142. doi: 10.1038/ncomms8142.
Cheng, M., Li, C., Zhou, L., Algeo, T. J., Zhang, F. F., Romaniello, S., Jin, C. S., Lei, L. D., Feng, L. J. & Jiang, S. Y. 2016. Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters: a case study of the lower Cambrian Niutitang shales, South China. Geochimica et Cosmochimica Acta 183, 7993.
Cremonese, L., Shields-Zhou, G., Struck, U., Ling, H.-F., Och, L., Chen, X. & Li, D. 2013. Marine biogeochemical cycling during the early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan section, South China. Precambrian Research 225, 148–65.
Emerson, S. R. & Huested, S. S. 1991. Ocena anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry 34 (34): 177–96.
Feng, L., Li, C., Huang, J., Chang, H. & Chu, X. 2014. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca.529–521Ma) Yangtze platform, South China. Precambrian Research 246, 123–33.
Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. 2006. Oxidation of the Ediacaran ocean. Nature 444 (7120), 744–7.
Godfrey, L. V. & Falkowski, P. G. 2009. The cycling and redox state of nitrogen in the Archaean ocean. Nature Geoscience 2 (10), 725–9.
Goldberg, E. D. 1963. Mineralogy and chemistry of marine sedimentation. In Submarine Geology (ed. Shepard, F. P.), pp. 436–66. New York: Harper and Row.
Goldberg, T., Poulton, S. & Strauss, H. 2005. Sulfur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulfate, Yangtze Platform, China: diagenetic constraints and seawater evolution. Precambrian Research 137 (3–4), 223–41.
Goldberg, T., Strauss, H., Guo, Q. & Liu, C. 2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: evidence from biogenic sulfur and organic carbon isotopes. Palaeogeography Palaeoclimatology Palaeoecology 254 (1–2), 175–93.
Guo, Q., Shields, G. A., Liu, C., Strauss, H., Zhu, M., Pi, D., Goldberg, T. & Yang, X. 2007. Trace element chemostratigraphy of two Ediacaran–Cambrian successions in South China: implications for organosedimentary metal enrichment and silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology 254 (1–2), 194216.
Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. 2002. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–4.
Habicht, K. S., Salling, L., Thamdrup, B. & Canfield, D. E. 2005. Effect of low sulfate concentrations on lactate oxidation and isotope fractionation during sulfate reduction by Archaeoglobus fulgidus strain Z†. Applied and Environmental Microbiology 71 (7), 3770–7.
Haq, B. U. & Schutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science 322 (5898), 64–8.
Harrison, A. G. & Thode, H. G. 1958. Mechanism of the bacterial reduction of sulfate from isotope fractionation studies. Transactions of the Faraday Society 54, 84–92.
Higgins, M. B., Robinson, R. S., Husson, J. M., Carter, S. J. & Pearson, A. 2012. Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4 + . Proceedings of the National Academy of Sciences of the United States of America 109, 2269–74.
Holland, H. D. 2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B Biological Sciences 361 (1470), 903–15.
Holser, W., Schidlowski, M., Mackenzie, F. & Maynard, J. 1988. Biogeochemical cycles of carbon and sulfur. Chemical Cycles in the Evolution of the Earth. Chichester: John Wiley & Sons, 105–74.
Jiang, S., Chen, Y., Ling, H., Yang, J., Feng, H. & Ni, P. 2006. Trace- and rare-earth element geochemistry and Pb–Pb dating of black shales and intercalated Ni–Mo–PGE–Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China. Mineralium Deposita 41 (5), 453467.
Jin, C. S., Li, C., Algeo, T. J., Planavsky, N. J., Cui, H., Yang, X. L., Zhao, Y. L., Zhang, X. L. & Xie, S. C. 2016. A highly redox-heterogeneous ocean in South China during the Early Cambrian (~529–514 Ma): implications for a local “Cambrian Explosion”. Earth and Planetary Science Letters 441, 3851.
Jin, C. S., Li, C., Peng, X. F., Cui, H., Shi, W., Zhang, Z.H., Luo, G. M. & Xie, S. C. 2014. Spatiotemporal variability of ocean chemistry in the early Cambrian, South China. Science China Earth Science 57, 579–91.
Jones, D. S. & Fike, D. A. 2013. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ34S. Earth and Planetary Science Letters 363, 144–55.
Kikumoto, R., Tahata, M., Nishizawa, M., Sawaki, Y., Maruyama, S., Shu, D.G., Han, J., Komiya, T., Takai, K. & Ueno, Y. 2014. Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China. Gondwana Research 25, 1057–69.
Lehmann, B., Nägler, T. F., Holland, H. D., Wille, M., Mao, J., Pan, J., Ma, D. & Dulski, P. 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology 35 (5), 403–6.
Li, C., Cheng, M., Algeo, T. J. & Xie, S. C. 2015. A theoretical prediction of chemical zonation in early oceans (>520 Ma). Science in China D (Earth Sciences) 58 (11), 1901–9.
Li, C., Love, G. D., Lyons, T. W., Fike, D. A., Sessions, A. L. & Chu, X. 2010. A stratified redox model for the Ediacaran ocean. Science 328 (5974), 80–3.
Li, C., Love, G. D., Lyons, T. W., Scott, C. T., Feng, L., Huang, J., Chang, H., Zhang, Q. & Chu, X. 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth and Planetary Science Letters 331–332, 246–56.
Li, Z., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160 (1–2), 179210.
Ling, H.-F., Chen, X., Li, D., Wang, D., Shields-Zhou, G. A. & Zhu, M. 2013. Cerium anomaly variations in Ediacaran – earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater. Precambrian Research 225, 110–27.
Lyons, T. W., Anbar, A. D., Severmann, S., Scott, C. & Gill, B. C. 2009. Tracking Euxinia in the ancient ocean: a multiproxy perspective and proterozoic case study. Annual Review of Earth and Planetary Sciences 37 (1), 507–34.
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506 (7488), 307–15.
Och, L. M. & Shields-Zhou, G. A. 2012. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth-Science Reviews 110 (1–4), 2657.
Och, L. M., Shields-Zhou, G. A., Poulton, S. W., Manning, C., Thirlwall, M. F., Li, D., Chen, X., Ling, H., Osborn, T. & Cremonese, L. 2013. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Research 225, 166–89.
Ohkouchi, N., Nakajima, Y., Okada, H., Ogawa, N. O., Suga, H., Oguri, K. & Kitazato, H. 2005. Biogeochemical processes in the saline meromictic Lake Kaiike, Japan: implications from molecular isotopic evidences of photosynthetic pigments. Environmental Microbiology 7, 1009–16.
Pinti, D. L., Hashizume, K., Orberger, B., Gallien, J. P., Cloquet, C. & Massault, M. 2007. Biogenic nitrogen and carbon in Fe-Mn-oxyhydroxides from an Archean chert, Marble Bar, Western Australia. Geochemistry, Geophysics, Geosystems 8, Q02007. doi: 10.1029/2006GC001394.
Piper, D. Z. & Calvert, S. E. 2009. A marine biogeochemical perspective on black shale deposition. Earth-Science Reviews 95 (1–2), 6396.
Prokopenko, M., Hammond, D., Berelson, W., Bernhard, J., Stott, L., Douglas, R. 2006. Nitrogen cycling in the sediments of Santa Barbara basin and Eastern Subtropical North Pacific: nitrogen isotopes, diagenesis and possible chemosymbiosis between two lithotrophs (Thioploca and Anammox) – ‘riding on a glider’. Earth and Planetary Science Letters 242, 186204.
Redfield, A. C. 1963. The influence of organisms on the composition of seawater. In The Sea (ed. Hill, M. N.), vol. II, pp. 2677. New York: John Wiley.
Reinhard, C. T., Planavsky, N. J., Robbins, L. J., Partin, C. A., Gill, B. C., Lalonde, S. V., Bekker, A., Konhauser, K. O. & Lyons, T. W. 2013. Proterozoic ocean redox and biogeochemical stasis. Proceedings of the National Academy of Sciences of the United States of America 110 (14), 5357–62.
Sahoo, S. K., Planavsky, N. J., Kendall, B., Wang, X., Shi, X., Scott, C., Anbar, A. D., Lyons, T. W. & Jiang, G. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489 (7417), 546–9.
Scott, C. & Lyons, T. W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chemical Geology 324–325, 1927.
Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X. & Anbar, A. D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452 (7186), 456–59.
Shen, Y., Zhao, R., Chu, X. & Lei, J. 1998. The carbon and sulfate isotope signature in the Precambrian–Cambrian transition series of the Yangtze Platform. Precambrian Research 89, 7786.
Shields-Zhou, G. & Zhu, M. 2013. Biogeochemical changes across the Ediacaran–Cambrian transition in South China. Precambrian Research 225, 16.
Sigman, D., Karsh, K. & Casciotti, K. 2009. Ocean process tracers: nitrogen isotopes in the ocean. Encyclopedia of Ocean Science, 2nd edn. Amsterdam: Elsevier.
Steiner, M., Zhu, M., Weber, B. & Geyer, G. 2001. The Lower Cambrian of eastern Yun-nan: trilobite-based biostratigraphy and related faunas. Acta Palaeontologica Sinica 40 (Suppl.), 6379.
Strauss, H. 1997. The isotopic composition of sedimentary sulfur through time. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 97118.
Strauss, H. 1999. Geological evolution from isotope proxy signals – sulfur. Chemical Geology, 161 (1–3), 89101.
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell.
Thomazo, C., Ader, M. & Philippot, P. 2011. Extreme 15N-enrichments in 2.72-Gyrold sediments: evidence for a turning point in the nitrogen cycle. Geobiology 9,107–20.
Tribovillard, N., Algeo, T. J., Baudin, F. & Riboulleau, A. 2012. Analysis of marine environmental conditions based on molybdenum uranium covariation: applications to Mesozoic paleoceanography. Chemical Geology 324–325, 4658.
Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232 (1–2), 1232.
Wang, D., Ulrich, S., Ling, H-F., Guo, Q-J., Shields-Zhou, G. A., Zhu, M-Y. & Yao, S-P. 2015. Marine redox variations and nitrogen cycle of the early Cambrian southern margin of the Yangtze Platform, South China: evidence from nitrogen and organic carbon isotopes. Precambrian Research 267, 209–26.
Wang, X., Shi, X., Jiang, G. & Zhang, W. 2012. New U–Pb age from the basal Niutitang Formation in South China: implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran–Cambrian transition. Journal of Asian Earth Sciences 48, 18.
Wang, X., Shi, X., Zhao, X. & Tang, D. 2015. Increase of seawater Mo inventory and ocean oxygenation during the early Cambrian. Palaeogeography Palaeoclimatology Palaeoecology 440, 621–31.
Wedepohl, K. H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–32.
Wei, W., Wang, D., Li, D., Ling, H. F., Chen, X., Wei, G. Y., Zhang, F. F., Zhu, X. K. & Yan, B. 2016. Evidence from nitrogen isotopes and Mo contents of the Basal Datangpo Formation, northeastern Guizhou, South China. Journal of Earth Science 27 (2), 233–41.
Xu, L. G., Lehmann, B., Mao, J. W., Nägler, T. F., Neubert, N., Böttcher, M. E. & Escher, P. 2012. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: multi-proxy constraints on the paleoenvironment. Chemical Geology 318–319, 4559.
Xu, L. G., Lehmann, B., Mao, J. W., Qu, W. J. & Du, A. D. 2011. Re–Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China – a reassessment. Economic Geology 106, 511–22.
Zerkle, A. L., House, C. H., Cox, R. P. & Canfield, D. E. 2006. Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology 4, 285–97.
Zerkle, A. L., Junium, C. K., Canfield, D. E. & House, C. H. 2008. Production of 15N-depleted biomass during cyanobacterial N2-fixation at high Fe concentrations. Journal of Geophysical Research – Biogeosciences 113 (G3). doi: 10.1029/2007JG000651.
Zhang, X. N., Sigman, D. M., Morel, F. M. M. & Kraepiel, A. M. L. 2014. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proceedings of the National Academy of Sciences of the United States of America 111 (13), 4782–7.
Zhu, M., Strauss, H. & Shields, G. A. 2007. From snowball earth to the Cambrian bioradiation: calibration of Ediacaran-Cambrian earth history in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 16.
Zhu, M., Zhang, J., Steiner, M., Yang, A., Li, G. & Erdtmann, B. D. 2003. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: an integrated approach. Progress in Natural Science 13, 951–60.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed