Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T16:52:32.066Z Has data issue: false hasContentIssue false

Last Interglacial (Eemian) hydrographic conditions in the southwestern Baltic Sea based on dinoflagellate cysts from Ristinge Klint, Denmark

Published online by Cambridge University Press:  21 August 2007

MARTIN J. HEAD*
Affiliation:
Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada
*

Abstract

A dinoflagellate cyst record with strong Mediterranean/Lusitanian affinities is described from marine deposits of Eemian age (Last Interglacial; Late Pleistocene) at Ristinge Klint, Denmark, revealing new information about the hydrographic evolution of the southwestern Baltic Sea. A revised correlation of the pollen record at Ristinge Klint with that of the annually laminated site at Bispingen in northern Germany provides temporal control. Approximately the first quarter of Eemian time is represented. A marine ingression into a lake took place during the Quercus rise, about 300 years into the interglacial, and is marked by low (< c. 3 psu) salinities at the base of the Cyprina Clay that increased progressively. An abrupt and significant rise in the inflow of warm, saline waters from the North Sea occurred at about 750 years into the interglacial (the Corylus rise), and at about 1900 years into the interglacial, strongly stratified waters developed. Higher in the Cyprina Clay and continuing to its top, at nearly 3000 years into the interglacial, more open-marine waters are indicated, although fully marine conditions were not reached. The dinoflagellate record throughout the Cyprina Clay at Ristinge Klint is therefore one of increasing marine influence. Summer sea-surface temperatures approached, and may have exceeded, 26–28 °C during early Eemian time, indicating temperatures at least 5 °C warmer than at present. These warm conditions persisted to the top of the record at Ristinge Klint. No evidence exists at Ristinge Klint for the influence of Arctic watermasses, and the paucity of cold-water species throughout the section reflects mild winter temperatures in the southwestern Baltic Sea.

The new species Spiniferites ristingensis is formally described, and the name Operculodinium centrocarpum var. cezare de Vernal, Goyette & Rodrigues, 1989 is validated.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalbersberg, G. & Litt, T. 1998. Multiproxy climate reconstructions for the Eemian and Early Weichselian. Journal of Quaternary Science 13, 367–90.3.0.CO;2-I>CrossRefGoogle Scholar
Andersen, S. T. 1961. Vegetation and its environment in Denmark in the Early Weichselian Glacial (Last Glacial). Danmarks Geologiske Undersøgelse, II Række 75, 1175.CrossRefGoogle Scholar
Andersen, S. T. 1975. The Eemian freshwater deposit at Egernsund, South Jylland, and the Eemian landscape development in Denmark. Danmarks Geologiske Undersøgelse Årbog 1974, 49–70.Google Scholar
Balech, E. 1988. Los dinoflagelados del Atlántico Sudoccidental. Publicaciónes Especiales Instituto Español de Oceanografía 1, 1310.Google Scholar
Beets, D. J., Beets, C. J. & Cleveringa, P. 2006. Age and climate of the late Saalian and early Eemian in the type-area, Amsterdam basin, The Netherlands. Quaternary Science Reviews 25, 876–85.CrossRefGoogle Scholar
Bradford, M. R. 1975. New dinoflagellate cyst genera from the recent sediments of the Persian Gulf. Canadian Journal of Botany 53, 3064–74.CrossRefGoogle Scholar
Brenner, W. W. 2001 a. Distribution of organic walled microfossils within single lamina from the Gotland Basin, and their environmental evidence. Baltica 14 (2001), 34–9.Google Scholar
Brenner, W. W. 2001 b. Organic-walled microfossils from the central Baltic Sea, indicators of environmental change and base for ecostratigraphic correlation. Baltica 14 (2001), 4051.Google Scholar
Brenner, W. & Meemken, H.-J. 2002. Öko- und chronostratigraphische Korrelierung der Zentralen Ostsee mit der Kieler Bucht anhand organisch-wandiger Mikrofossilien. Meyniana 54, 1740.Google Scholar
Bütschli, O. 1885. Erster Band. Protozoa. In Dr. H.G. Bronn's Klassen und Ordnungen des Thier-Reiches, wissenschaftlich dargestellt in Wort und Bild, pp. 8651088. Leipzig and Heidelberg: C.F. Winter'sche Verlagshandlung.Google Scholar
Cape Last Interglacial Project Members. 2006. Last Interglacial arctic warmth confirms polar amplification of climate change. Quaternary Scince Reviews 25, 13831400.CrossRefGoogle Scholar
Christensen, T., Koch, C. & Thomsen, H. A. 1985. Distribution of Algae in Danish Salt and Brackish Waters. Institut for Sporeplanter, University of Copenhagen.Google Scholar
CLIMAP project members. 1984. The Last Interglacial ocean. Quaternary Research 21, 123–4.CrossRefGoogle Scholar
Dale, B. 1983. Dinoflagellate resting cysts: “benthic plankton”. In Survival strategies of the algae (ed. Fryxell, G. A.), pp. 69136. Cambridge, UK: Cambridge University Press.Google Scholar
Dale, B. 1988. Low salinity dinoflagellate cyst assemblages from Recent sediments of the Baltic region. Seventh International Palynological Congress, Brisbane, Abstracts, p. 33.Google Scholar
Dale, B. 1996. Dinoflagellate cyst ecology: modeling and geological applications. In Palynology: Principles and Applications. Volume 3 (eds Jansonius, J. & McGregor, D. C.), pp. 1249–75. Dallas, Texas: American Association of Stratigraphic Palynologists Foundation.Google Scholar
Deflandre, G. & Cookson, I. C. 1955. Fossil microplankton from Australian Late Mesozoic and Tertiary sediments. Australian Journal of Marine and Freshwater Research 6 (2), 242313.Google Scholar
de Vernal, A., Goyette, C. & Rodrigues, C. G. 1989. Contribution palynostratigraphique (dinokystes, pollen et spores) à la connaissance de la mer de Champlain: coupe de Saint-Césaire, Québec. Canadian Journal of Earth Sciences 26, 2450–64.CrossRefGoogle Scholar
de Vernal, A., Henry, M., Matthiessen, J., Mudie, P. J., Rochon, A., Boessenkool, K. P., Eynaud, F., Grøsfjeld, K., Guiot, J., Hamel, D., Harland, R., Head, M. J., Kunz-Pirrung, M., Levac, E., Loucheur, V., Peyron, O., Pospelova, V., Radi, T., Turon, J.-L. & Voronina, E. 2001. Dinoflagellate cyst assemblages as tracers of sea-surface conditions in the northern North Atlantic, Arctic and sub-Arctic seas: the new ‘n = 677’ data base and its application for quantitative palaeoceanographic reconstruction. Journal of Quaternary Science 16, 681–98.CrossRefGoogle Scholar
Donner, J. 1995. The Quaternary history of Scandinavia. Cambridge, UK: Cambridge University Press, 200 pp.Google Scholar
Edler, L., Hälfors, G. & Niemi, Å. 1984. A preliminary check-list of the phytoplankton of the Baltic Sea. Acta Botanica Fennica 128, 126.Google Scholar
Ellegaard, M. 2000. Variations in dinoflagellate cyst morphology under conditions of changing salinity during the last 2000 years in the Limfjord, Denmark. Review of Palaeobotany and Palynology 109, 6581.CrossRefGoogle ScholarPubMed
Ellegaard, M., Christensen, N. F. & Moestrup, Ø. 1994. Dinoflagellate cysts from Recent Danish marine sediments. European Journal of Phycology 29, 183–94.CrossRefGoogle Scholar
Ellegaard, M., Lewis, J. & Harding, I. 2002. Cyst–theca relationship, life cycle, and effects of temperature and salinity on the cyst morphology of Gonyaulax baltica sp. nov. (Dinophyceae) from the Baltic Sea area. Journal of Phycology 38, 775–89.CrossRefGoogle Scholar
Eriksson, B., Grönlund, T. & Uutela, A. 1999. Biostratigraphy of Eemian sediments at Mertuanoja, Pohjanmaa (Ostrobothnia), western Finland. Boreas 28, 274–91.CrossRefGoogle Scholar
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I. & Williams, G. L. 1993. A classification of living and fossil dinoflagellates. Micropaleontology Special Publication Number 7, i–viii, 1351.Google Scholar
Fensome, R. A. & Williams, G. L. 2004. The Lentin & Williams index of fossil dinoflagellates 2004 edition. American Association of Stratigraphic Palynologists Contributions Series 42, 1909.Google Scholar
Field, M. H., Huntley, B. & Müller, H. 1994. Eemian climate fluctuations observed in a European pollen record. Nature 371, 779–83.CrossRefGoogle Scholar
Funder, S. & Balic-Zunic, T. 2006. Hypoxia in the Eemian: mollusk faunas and sediment mineralogy from Cyprina Clay in the south Baltic region. Boreas 35, 367–77.CrossRefGoogle Scholar
Funder, S., Demidov, I. & Yelovicheva, Y. 2002. Hydrography and mollusc faunas of the Baltic and White Sea–North Sea seaway in the Eemian. Palaeogeography, Palaeoclimatology, Palaeoecology 184, 275304.CrossRefGoogle Scholar
Gibbard, P. L. & Glaister, C. 2006. Pollen stratigraphy of the Late Pleistocene sediments at Mommark, Als, South Denmark. Boreas 35, 332–48.CrossRefGoogle Scholar
Glaister, C. G. & Gibbard, P. L. 1998. Pollen stratigraphy of Late Pleistocene marine sediments at Nørre Lyngby and Skagen, North Denmark. Quaternary Science Reviews 17, 839–54.CrossRefGoogle Scholar
Greuter, W., McNeill, J., Barrie, F. R., Burdet, H. M., Demoulin, V., Filgueiras, T. S., Nicolson, D. H., Silva, P. C., Skog, J. E., Trehane, P., Turland, N. J. & Hawksworth, D. L. 2000. International Code of Botanical Nomenclature (Saint Louis Code). Regnum Vegetabile 138, ixviii, 1474.Google Scholar
Grøsfjeld, K., Funder, S., Seidenkrantz, M.-S. & Glaister, C. 2006. Last Interglacial marine environments in the White Sea region, northwestern Russia. Boreas 35, 493520.CrossRefGoogle Scholar
Grøsfjeld, K. & Harland, R. 2001. Distribution of modern dinoflagellate cysts from inshore areas along the coast of southern Norway. Journal of Quaternary Science 16, 651–9.CrossRefGoogle Scholar
Haeckel, E. 1894. Systematische Phylogenie. Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammegeschichte, I. Systematische Phylogenie der Protisten und Pflanzen, pp. ixv, 1–400. Berlin: Reimer.Google Scholar
Haila, H., Miettinen, A. & Eronen, M. 2006. Diatom succession of a dislocated Eemian sediment sequence at Mommark, South Denmark. Boreas 35, 378–84.CrossRefGoogle Scholar
Hansen, G. & Larsen, J. 1992. Dinoflagellater i danske farvande. In Plankton i de indre danske farvande (ed. Thomsen, H. A.), pp. 45155. Copenhagen: Havforskning fra Miljøstyrelsen, Nr. 11.Google Scholar
Harland, R. 1982. A review of Recent and Quaternary organic-walled dinoflagellate cysts of the genus Protoperidinium. Palaeontology 25, 369–97.Google Scholar
Head, M. J. 1996 a. Modern dinoflagellate cysts and their biological affinities. In Palynology: principles and applications. Volume 3 (eds Jansonius, J. & McGregor, D. C.), pp. 11971248. Dallas, Texas: American Association of Stratigraphic Palynologists Foundation.Google Scholar
Head, M. J. 1996 b. Late Cenozoic dinoflagellates from the Royal Society borehole at Ludham, Norfolk, eastern England. Journal of Paleontology 70, 543–70.CrossRefGoogle Scholar
Head, M. J. 1998. New goniodomacean dinoflagellates with a compound hypotractal archeopyle from the late Cenozoic: Capisocysta Warny and Wrenn, emend. Journal of Paleontology 72, 797809.CrossRefGoogle Scholar
Head, M. J. 2003. Echinidinium zonneveldiae sp. nov., a dinoflagellate cyst from the Late Pleistocene of the Baltic Sea, northern Europe. Journal of Micropalaeontology 21, 169–73 (imprinted, 2002).CrossRefGoogle Scholar
Head, M. J., Harland, R. & Matthiessen, J. 2001. Cold marine indicators of the late Quaternary: the new dinoflagellate cyst genus Islandinium and related morphotypes. Journal of Quaternary Science 16, 621–36.CrossRefGoogle Scholar
Head, M. J., Seidenkrantz, M.-S., Janczyk-Kopikowa, Z., Marks, L. & Gibbard, P. L. 2005. Last Interglacial (Eemian) hydrographic conditions in the southeastern Baltic Sea, NE Europe, based on dinoflagellate cysts. Quaternary International 130, 330.CrossRefGoogle Scholar
Heimdal, B. R., Hasle, G. R. & Throndsen, J. 1973. An annotated check-list of plankton algae from the Oslofjord, Norway (1951–1972). Norwegian Journal of Botany 20, 1319.Google Scholar
Johnstrup, F. 1882. Nogle Iagttagelser over Glacialphaenomenerne af Cyprina-leret i Danmark. 74 pp. København: Univ. Program Kongens Födselsdag 1881.Google Scholar
Knudsen, K. L. 1985. Foraminiferal faunas in Eemian deposits of the Oldenbüttel area near the Kiel Canal, Germany. Geologisches Jahrbuch, A 86, 2747.Google Scholar
Knudsen, K.-L., Seidenkrantz, M.-S. & Kristensen, P. 2002. Last interglacial and early glacial circulation in the northern North Atlantic. Quaternary Research 58, 22–6.CrossRefGoogle Scholar
Kosack, B. & Lange, W. 1985. Das Eem-Vorkommen von Offenbüttel/Schnittlohe und die Ausbreitung des Eem-Meeres zwischen Nord- und Ostsee. Geologisches Jahrbuch, A 86, 317.Google Scholar
Kristensen, P., Gibbard, P., Knudsen, K. L. & Ehlers, J. 2000. Last interglacial stratigraphy at Ristinge Klint, South Denmark. Boreas 29, 103–16.CrossRefGoogle Scholar
Kristensen, P. H. & Knudsen, K. L. 2006. Palaeoenvironments of a complete Eemian sequence at Mommark, South Denmark: foraminifera, ostracods and stable isotopes. Boreas 35, 349–66.CrossRefGoogle Scholar
Lindemann, E. 1928. Abteilung Peridineae (Dinoflagellatae). In Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen (eds Engler, A. & Prantl, K.), pp. 3104. Zweite stark vermehrte und verbesserte Auflage herausgegeben von A. Engler. 2 Band. Leipzig: Wilhelm Engelmann.Google Scholar
Madsen, V., Nordmann, V. & Hartz, N. 1908. Eem-Zonerne. Studier over Cyprinaleret og andre Eem-Aflejringer i Danmark, Nord-Tyskland og Holland. Danmarks Geologiske Undersøgelse II 17, 1302.Google Scholar
Mantell, G. A. 1850. A Pictorial Atlas of Fossil Remains, Consisting of Coloured Illustrations Selected from Parkinson's “Organic Remains of a Former World”, and Artis's “Antediluvian Phytology”, pp. xii+207, 74 pl. London, UK: Henry G. Bohn.Google Scholar
Marret, F. & Zonneveld, K. A. F. 2003. Atlas of modern organic-walled dinoflagellate cyst distribution. Review of Palaeobotany and Palynology 125, 1200.CrossRefGoogle Scholar
Matsuoka, K., McMinn, A. & Wrenn, J. H. 1997. Restudy of the holotype of Operculodinium centrocarpum (Deflandre & Cookson) Wall (Dinophyceae) from the Miocene of Australia, and the taxonomy of related species. Palynology 21, 1933.CrossRefGoogle Scholar
Matthiessen, J. & Brenner, W. 1996. Chlorococcalalgen und Dinoflagellaten-Zysten in rezenten Sedimenten des Greifswalder Boddens (südliche Ostsee). Senckenbergiana Maritima 27, 3348.Google Scholar
Müller, H. 1974. Pollenanalytische Untersuchungen und Jahresschichtenzählungen an der eem-zeitlichen Kieselgur von Bispingen/Luhe. Geologisches Jahrbuch A 21, 149–69.Google Scholar
Nehring, S. 1994. Spatial distribution of dinoflagellate resting cysts in Recent sediments of Kiel Bight, Germany (Baltic Sea). Ophelia 39, 137–58.CrossRefGoogle Scholar
Nehring, S. 1995. Dinoflagellate resting cysts as factors in phytoplankton ecology of the North Sea. Helgoländer Meeresuntersuchungen 49, 375–92.CrossRefGoogle Scholar
Nehring, S. 1997. Dinoflagellate resting cysts from Recent German coastal sediments. Botanica Marina 40, 307–24.CrossRefGoogle Scholar
Otto-Bliesner, B. L., Marsha, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. X. 2006. Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–3.CrossRefGoogle ScholarPubMed
Overpeck, J. T., Otto-Bliesner, B. L., Miller, G. H., Muhs, D. R., Alley, R. B. & Kiehl, J. T. 2006. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311, 1747–50.CrossRefGoogle ScholarPubMed
Pankow, H. 1990. Ostsee-Algenflora. Jena: Fischer, 648 pp.Google Scholar
Pascher, A. 1914. Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellshaft 36, 136–60.Google Scholar
Persson, A., Godhe, A. & Karlson, B. 2000. Dinoflagellate cysts in recent sediments from the west coast of Sweden. Botanica Marina 43, 6979.CrossRefGoogle Scholar
Raukas, A. 1991. Eemian interglacial record in the northwestern European part of the Soviet Union. Quaternary International 10–12, 183–9.CrossRefGoogle Scholar
Reid, P. C. 1974. Gonyaulacacean dinoflagellate cysts from the British Isles. Nova Hedwigia 25, 579637.Google Scholar
Rochon, A., de Vernal, A., Turon, J.-L., Matthiessen, J. & Head, M. J. 1999. Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-surface parameters. American Association of Stratigraphic Palynologists, Contributions Series 35, 1146.Google Scholar
Rottgardt, D. 1952. Mikropalaöntologische wichtige Bestandteile rezenter brakischer Sedimente an den Küsten Schleswig-Holsteins. Meyniana 1, 169228.Google Scholar
Sánchez-Goñi, M. F., Eynaud, F., Turon, J.-L. & Shackleton, N. J. 1999. High-resolution palynological record off the Iberian margin: direct land/sea correlation for the Last Interglacial complex. Earth and Planetary Science Letters 171, 123–37.CrossRefGoogle Scholar
Sánchez-Goñi, M. F., Turon, J.-L., Eynaud, F., Shackleton, N. J. & Cayre, O. 2000. Direct land/sea correlation of the Eemian, and its comparison with the Holocene: a high-resolution palynological record off the Iberian margin. Geologie en Mijnbouw 79, 345–54.CrossRefGoogle Scholar
Sarjeant, W. A. S. 1970. The genus Spiniferites Mantell, 1850 (Dinophyceae). Grana 10, 74–8.CrossRefGoogle Scholar
Sejrup, H. P. & Knudsen, K. L. 1999. Geochronology and palaeoenvironment of marine Quaternary deposits in Denmark: new evidence from northern Jutland. Geological Magazine 136, 561–78.CrossRefGoogle Scholar
Sejrup, H. P. & Larsen, E. 1991. Eemian–Early Weichselian N–S temperature gradients; North Atlantic–NW Europe. Quaternary International 10–12, 161–6.CrossRefGoogle Scholar
Shackleton, N. J., Sánchez-Goñi, M. F., Pailler, D. & Lancelot, Y. 2003. Marine Isotope Substage 5e and the Eemian Interglacial. Global and Planetary Change 36, 151–5.CrossRefGoogle Scholar
Sjørring, S., Nielsen, P. E., Frederiksen, J., Hegner, J., Hyde, G., Jensen, J. B., Mogensen, A. & Vortisch, W. 1982. Observationer fra Ristinge Klint, felt- og laboratorieundersøgelser. Dansk Geologisk Forening, Årsskrift for 1981, 135–49.Google Scholar
Stover, L. E., Brinkhuis, H., Damassa, S. P., de Verteuil, L., Helby, R. J., Monteil, E., Partridge, A. D., Powell, A. J., Riding, J. B., Smelror, M. & Williams, G. L. 1996. Mesozoic–Tertiary dinoflagellates, acritarchs and prasinophytes. In Palynology: Principles and Applications. Volume 2 (eds Jansonius, J. & McGregor, D. C.), pp. 641750. Dallas, Texas: American Association of Stratigraphic Palynologists Foundation.Google Scholar
Taylor, F. J. R. 1980. On dinoflagellate evolution. BioSystems 13, 65108.CrossRefGoogle ScholarPubMed
Throndsen, J. 1969. Flagellates of Norwegian coastal waters. Nytt Magasin for Botanikk 16, 161216.Google Scholar
Turner, C. 2000. The Eemian interglacial in the North European plain and adjacent areas. Geology en Mijnbouw 79, 217–31.CrossRefGoogle Scholar
Turner, C. 2002. Problems of the duration of the Eemian interglacial in Europe north of the Alps. Quaternary Research 58, 45–8.CrossRefGoogle Scholar
van Leeuwen, R. J. W., Beets, D. J., Bosch, J. H. A., Burger, A. W., Cleveringa, P., Van Harten, D., Herngreen, G. F. W., Kruk, R. W., Langereis, C. G., Meijer, T., Pouwer, R. & de Wolf, H. 2000. Stratigraphy and integrated facies analysis of the Saalian and Eemian sediments in the Amsterdam-Terminal borehole, the Netherlands. Geologie en Mijnbouw 79, 161–96.CrossRefGoogle Scholar
Wall, D. 1967. Fossil microplankton in deep-sea cores from the Caribbean Sea. Palaeontology 10, 95123.Google Scholar
Wall, D. & Dale, B. 1966. “Living fossils” in western Atlantic plankton. Nature 211, 1025–6.CrossRefGoogle Scholar
Wall, D. & Dale, B. 1968. Modern dinoflagellate cysts and evolution of the Peridiniales. Micropaleontology 14, 265304.CrossRefGoogle Scholar
Weaver, A. J. & Hughes, T. M. C. 1994. Rapid interglacial climate fluctuation driven by North Atlantic ocean circulation. Nature 367, 447–50.CrossRefGoogle Scholar
Williams, G. L., Brinkhuis, H., Pearce, M. A., Fensome, R. A. & Weegink, J. W. 2004. Southern Ocean and global dinoflagellate cyst events compared: Index events for the Late Cretaceous–Neogene. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 189 (eds Exon, N. F., Kennett, J. P. & Malone, M. J.), pp. 198. College Station, Texas.CrossRefGoogle Scholar
Zagwijn, W. H. 1983. Sea-level changes in The Netherlands during the Eemian. Geologie en Mijnbouw 62, 437–50.Google Scholar
Zagwijn, W. H. 1996. An analysis of Eemian climate in western and central Europe. Quaternary Science Reviews 15, 451–69.CrossRefGoogle Scholar
Zans, V. 1936. Das leztinterglaziale Portlandia-Meers des Balticums. Bulletin de la Commission géologique de Finlande 115, 231–50.Google Scholar
Zonneveld, K. A. F. 1997. New species of organic walled dinoflagellate cysts from modern sediments of the Arabian Sea (Indian Ocean). Review of Palaeobotany and Palynology 97, 319–37.CrossRefGoogle Scholar