Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T09:45:29.547Z Has data issue: false hasContentIssue false

A geochemical and geochronological study of the Early Cretaceous, extension-related Honggong ferroan (A-type) granite in southwestern Zhejiang Province, southeast China

Published online by Cambridge University Press:  27 September 2016

XILIN ZHAO
Affiliation:
Nanjing Centre, China Geological Survey, Nanjing 210016, China
YANG JIANG
Affiliation:
Nanjing Centre, China Geological Survey, Nanjing 210016, China
GUANGFU XING*
Affiliation:
Nanjing Centre, China Geological Survey, Nanjing 210016, China
ZHIHONG CHEN*
Affiliation:
Nanjing Centre, China Geological Survey, Nanjing 210016, China
KAI LIU
Affiliation:
Nanjing Centre, China Geological Survey, Nanjing 210016, China
MINGGANG YU
Affiliation:
Nanjing Centre, China Geological Survey, Nanjing 210016, China
SHENGYAO YU
Affiliation:
College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China
*
Author for correspondence: njxgfu@163.com and Zhihong_chen@126.com
Author for correspondence: njxgfu@163.com and Zhihong_chen@126.com

Abstract

The Honggong pluton is the largest ferroan alkalic (A-type) granite intrusion emplaced along the Jiangshan–Shaoxing fault zone in southwestern Zhejiang Province, and has important implications for understanding the Late Mesozoic tectonic evolution of SE China. U–Pb ages of 138.7 ± 0.8, 134.2 ± 1.1, 128.5 ± 1.5 and 126.1 ± 0.9 Ma were obtained from zircon by laser ablation–inductively coupled plasma–mass spectrometry, indicating that the Honggong pluton formed in the Early Cretaceous. The Honggong pluton has a clear ferroan alkalic (A-type) granite geochemical signature with, for example, high total alkali contents and FeOt/(FeOt + MgO) values. The Sr–Nd–Hf isotopic compositions suggest that there was juvenile material in the magma source. Geochemical evidence indicates that the pluton was derived through extensive fractionation of melts that contained both asthenospheric mantle and Mesoproterozoic crustal components. These rare granites in southern China were emplaced during five episodes at 235–225, 190, 165–155, 100–90 and 140–120 Ma. The age of the Honggong pluton suggests that localized extension in southwestern Zhejiang Province began as early as ~138 Ma and continued to 126 Ma. This Early Cretaceous extensional event was triggered by localized rollback of the subducting Pacific Plate.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belousova, E., Griffin, W. L., O'Reilly, S. Y. & Fisher, N. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602–22.CrossRefGoogle Scholar
Bonin, B. 1996. A-type granite ring complexes: mantle origin through crustal filters and the anorthosite–rapakivi magmatism connection. In Petrology and Geochemistry of Magmatic Suites of Rocks in the Continental and Oceanic Crusts, A Volume Dedicated to Professor J. Michot (ed. Demaiffe, D.), pp. 201–17. Bruxelles: ULB-MRAC.Google Scholar
Bonin, B. 2007. A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97, 129.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. Pacific Geology 8, 173–74.Google Scholar
Charvet, J., Lapierre, H. & Yu, Y. W. 1994. Geodynamic significance of the Mesozoic volcanism of southeastern China. Journal of Southeast Asian Earth Sciences 68, 387–96.CrossRefGoogle Scholar
Chen, J. F. & Jahn, B. M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284, 101–33.CrossRefGoogle Scholar
Chen, C. H., Lee, C. Y., Lu, H. Y. & Hsieh, P. S. 2008 b. Generation of Late Cretaceous silicic rocks in SE China coastal areas: age, major element and numerical simulation constraints. Journal of Asian Earth Sciences 31, 479–98.CrossRefGoogle Scholar
Chen, C. H., Lee, C. Y. & Shinjo, R. 2008 a. Was there Jurassic paleo-Pacific subduction in South China? Constraints from 40Ar/39Ar dating, elemental and Sr–Nd–Pb isotopic geochemistry of the Mesozoic basalts. Lithos 106, 8392.CrossRefGoogle Scholar
Chen, J. F., Guo, X., Tang, J. & Zhou, T. 1999 b. Nd isotopic model ages: implications of the growth of the continental crust of southeastern China. Journal of Nanjing University (Natural Sciences) 35, 649–58 (in Chinese with English abstract).Google Scholar
Chen, P. R., Kong, X. G., Wang, Y. X., Ni, Q. S., Zhang, B. T. & Ling, H. F. 1999 a. Rb–Sr isotopic dating and significance of early Yanshanian bimodal volcanic–intrusive complex from south Jiangxi province. Geological Journal of China Universities 5, 378–83 (in Chinese with English abstract).Google Scholar
Chen, P. R., Zhang, B. T., Kong, X. G., Cai, B. C., Ling, H. F. & Ni, Q. S. 1998. Geochemical characteristics and tectonic implication of Zhaibei A-type granitic intrusives in South Jiangxi Province. Acta Petrologica Sinica 14, 289–98 (in Chinese).Google Scholar
Chen, J., Zhou, T. & Yin, C. 1991. 40Ar–39Ar age of some Mesozoic intrusive rocks in the southeast of Zhejiang Province. Acta Petrologica Sinica 7, 3744 (in Chinese with English abstract).Google Scholar
Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., German, C. R., Bayon, G. & Burton, K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–74.CrossRefGoogle Scholar
Clemens, J. D., 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth Science Review 61, 118.CrossRefGoogle Scholar
Clemens, J. D., Brich, W. D. & Dudley, R. A. 2011. S-type ignimbrites with polybaric crystallization histories: the Tolmie igneous complex, Central Victoria, Australia. Contributions to Mineralogy and Petrology 162, 1315–37.CrossRefGoogle Scholar
Collins, W., Beams, S., White, A. & Chappell, B. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology 80, 189200.CrossRefGoogle Scholar
Creaser, R. A., Price, R. C. & Wormald, R. J. 1991. A-type granites revisited: assessment of a residual-source model. Geology 19, 163–6.2.3.CO;2>CrossRefGoogle Scholar
Eby, G. N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641–4.2.3.CO;2>CrossRefGoogle Scholar
Foley, S., Tiepolo, M. & Vannucci, R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837–40.CrossRefGoogle ScholarPubMed
Fourie, D. S. & Harris, C. 2011. O-isotope study of the Bushveld Complex granites and granophyres: constraints on source composition and assimilation. Journal of Petrology 52, 2221–42.CrossRefGoogle Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.CrossRefGoogle Scholar
Frost, C. D. & Frost, B. R. 1997. High-K, iron-enriched rapakivi-type granites: the tholeiite connection. Geology 25, 647–50.2.3.CO;2>CrossRefGoogle Scholar
Frost, C. D. & Frost, B. R. 2011. On ferroan (A-type) granitoids: their compositional variability and modes of origin. Journal of Petrology 52, 3953.CrossRefGoogle Scholar
Gao, W. L., Wang, Z. X., Song, W. J., Wang, D. X. & Li, C. L. 2014. Zircon U–Pb geochronology, geochemistry and tectonic implications of Triassic A-type granites from southeastern Zhejiang, south China. Journal of Asian Earth Sciences 96, 255–68.CrossRefGoogle Scholar
Gilder, S. A., Keller, G. R., Luo, M. & Goodell, P. C. 1991. Eastern Asia and the Western Pacific timing and spatial distribution of rifting in China. Tectonophysics 197, 225–43.CrossRefGoogle Scholar
Gong, R. X. & Lu, C. Z. 2008. Petrogeochemistry of Late Mesozoic alkali-rich potassium-high granitoid in western Zhejiang and its tectonic significance. Acta Petrologica Sinica 24, 2343–51 (in Chinese with English abstract).Google Scholar
Green, T. H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust–mantle system. Chemical Geology 120, 347–59.CrossRefGoogle Scholar
Green, T. H. & Pearson, N. J. 1986. Ti-rich accessory phase saturation in hydrous mafic–felsic compositions at high P, T. Chemical Geology 54, 185201.CrossRefGoogle Scholar
Guo, F., Fan, W. M., Li, C. W., Zhao, L., Li, H. X. & Yang, J. H. 2012. Multi-stage crust–mantle interaction in SE China: temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong–Fujian provinces. Lithos 150, 6284.CrossRefGoogle Scholar
Harrison, T. M. & Watson, E. B. 1984. The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta 48, 1468–77.CrossRefGoogle Scholar
He, Z. Y. & Xu, X. S. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: response to the geodynamics of paleo-Pacific plate subduction. Chemical Geology 328, 208–21.CrossRefGoogle Scholar
He, Z. Y., Xu, X. S. & Niu, Y. L. 2010. Petrogenesis and tectonic significance of a Mesozoic granite–syenite–gabbro association from inland south China. Lithos 119, 621–41.CrossRefGoogle Scholar
He, Z. Y., Xu, X. S., Yu, Y. & Zou, H. B. 2009. Origin of the Late Cretaceous syenite from Yandangshan, SE China, constrained by zircon U/Pb and Hf isotopes and geochemical data. International Geology Review 51, 556–82.CrossRefGoogle Scholar
Hou, K. J., Li, Y. H. & Tian, Y. Y. 2009. In situ U–Pb zircon dating using laser ablation–multi ion counting–ICP–MS. Mineral Deposits 28, 481–92 (in Chinese with English abstract).Google Scholar
Hou, K. J., Li, Y. H., Zou, T. R., Qu, X. M., Shi, Y. R. & Xie, G. Q. 2007. Laser ablation–MC–ICP–MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica 23, 2595–604 (in Chinese with English abstract).Google Scholar
Hu, Z. C., Gao, S., Liu, Y. S., Hu, S. H., Chen, H. H. & Yuan, H. L. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry 23, 1093–101.CrossRefGoogle Scholar
Huang, X., Sun, S. H., DePaolo, D. J. & Wu, K. L. 1986. Nd–Sr isotope geochronology study of Cretaceous magmatic rocks from Fujian province. Acta Petrolei Sinica 2, 5063 (in Chinese with English abstract).Google Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.CrossRefGoogle Scholar
Jahn, B. M., Chen, P. Y. & Yen, T. P. 1976. Rb–Sr ages of granitic rocks in southeastern China and their tectonic significance. Geological Society of America Bulletin 87, 763–76.2.0.CO;2>CrossRefGoogle Scholar
Jahn, B. M., Zhou, X. H. & Li, J. L. 1990. Formation and tectonic evolution of southeastern China and Taiwan: isotopic and geochemical constraints. Tectonophysics 183, 145–60.CrossRefGoogle Scholar
Jiang, Y. H., Jiang, S. Y., Dai, B. Z., Liao, S. Y., Zhao, K. D. & Ling, H. F. 2009. Middle to Late Jurassic felsic and mafic magmatism in southern Hunan province, southeast China: implications for a continental arc to rifting. Lithos 107, 85204.CrossRefGoogle Scholar
Jiang, Y. H., Zhao, P., Zhou, Q., Liao, S. Y. & Jin, G. D. 2011. Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan–Hang rift, SE China. Lithos 121, 5573.CrossRefGoogle Scholar
Jung, S. & Pfänder, J. A. 2007. Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy 19, 859–70.CrossRefGoogle Scholar
King, P. L., Chappell, B. W., Allen, C. M. & White, A. J. R. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australia Journal of Earth Sciences 48, 501–14.CrossRefGoogle Scholar
King, P. L., White, A. J. R., Chappell, B. W. & Allen, C. M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology 38, 371–91.CrossRefGoogle Scholar
Lan, C. Y., Jahn, B. M., Mertzman, S. A. & Wu, T. W. 1996. Subduction-related granitic rocks of Taiwan. Journal of Southeast Asian Earth Sciences 14, 1128.CrossRefGoogle Scholar
Landenberger, B. & Collins, W. J. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: evidence from the Chaelundi complex, Eastern Australia. Journal of Petrology 37, 145–70.CrossRefGoogle Scholar
Lapierre, H., Jahn, B. M., Charvet, J. & Yu, Y. W. 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China. Tectonophysics 274, 321–38.CrossRefGoogle Scholar
Li, X. H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences 18, 293305.CrossRefGoogle Scholar
Li, X. H., Chen, Z., Liu, D. Y. & Li, W. X. 2003. Jurassic gabbro–granite–syenite suites from southern Jiangxi province, SE China: age, origin, and tectonic significance. International Geology Review 45, 898921.CrossRefGoogle Scholar
Li, Z. X. & Li, X. H. 2007. Formation of the 1300 km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology 35, 179–82.CrossRefGoogle Scholar
Li, X. H., Li, Z. X., Li, W. X., Liu, Y., Yuan, C., Wei, G. J. & Qi, C. S. 2007. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints and origin of Jurassic I- and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab? Lithos 96, 186204.CrossRefGoogle Scholar
Li, H., Ling, M. X., Li, C. Y., Zhang, H., Ding, X., Yang, X. Y., Fan, W. M., Li, Y. L. & Sun, W. D. 2012. A-type granite belts of two chemical subgroups in central eastern China: indication of ridge subduction. Lithos 150, 2636.CrossRefGoogle Scholar
Li, X. H. & McCulloch, M. T. 1998. Geochemical characteristics of Cretaceous mafic dikes from northern Guangdong, SE China: age, origin and tectonic significance. In Mantle Dynamics and Plate Interaction in East Asia (eds Flower, M. F. J., Chung, S. L., Lo, C. H. & Lee, T.-Y.), pp. 405–19. American Geophysical Union Geodynamics Series, no. 27.CrossRefGoogle Scholar
Li, H., Watanabe, K. & Yonezu, K. 2014. Geochemistry of A-type granites in the Huangshaping polymetallic deposit (South Hunan, China): implications for granite evolution and associated mineralization. Journal of Asian Earth Sciences 88, 149–67.CrossRefGoogle Scholar
Li, Z. L., Zhou, J., Mao, J. R., Santosh, M., Yu, M. G., Li, Y. Q., Hu, Y. Z., Langmuir, C. H., Chen, Z. X., Cai, X. X. & Hu, Y. H. 2013. Zircon U–Pb geochronology and geochemistry of two episodes of granitoids from the northwestern Zhejiang Province, SE China: implication for magmatic evolution and tectonic transition. Lithos 179, 334–52.CrossRefGoogle Scholar
Ling, W. L., Duan, R. C., Xie, X. J., Zhang, Y. Q., Zhang, J. B., Cheng, J. P., Liu, X. M. & Yang, H. M. 2009. Contrasting geochemistry of the Cretaceous volcanic suites in Shandong province and its implications for the Mesozoic lower crust delamination in the eastern North China craton. Lithos 113, 640–58.CrossRefGoogle Scholar
Liou, J. G., Zhang, R. Y., Ernst, W. G., Liu, J. & McLimans, R. 1998. Mineral parageneses in the Piampaludo eclogitic body, Gruppo di Voltri, Western Ligurian Alps. Schweizerische Mineralogische und Petrographische Mitteilungen 78, 317–35.Google Scholar
Litvinovsky, B. A., Jahn, B. M., Zanvilevich, A. N., Saunders, A., Poulain, S., Kuzmin, D. V., Reichow, M. K. & Titov, A. V. 2002. Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoids magmas. Chemical Geology 189, 105–33.CrossRefGoogle Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q. & Wang, D. B. 2010 b. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology 51, 537–71.CrossRefGoogle Scholar
Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G. & Chen, H. H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.CrossRefGoogle Scholar
Liu, S. A., Li, S. G., He, Y. S. & Huang, F. 2010 a. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in Central–Eastern China: implications for petrogenesis and Cu–Au mineralization. Geochimica et Cosmochimica Acta 74, 7160–78.CrossRefGoogle Scholar
Loiselle, M. C. & Wones, D. R. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs 11, 468.Google Scholar
Lu, C. Z., Wang, Q. H., Dong, C. W. & Dong, X. F. 2006. Geochemical characteristics of the Honggong aluminous A-type granite pluton in Zhejiang Province and its tectonic setting. Geological Journal of China Universities 12, 500–6 (in Chinese with English abstract).Google Scholar
Manning, C. E. & Bohlen, S. R. 1991. The reaction titanite + kyanite = anorthite + rutile and titanite–rutile barometry in eclogites. Contributions to Mineralogy and Petrology 109, 19.CrossRefGoogle Scholar
Martin, H., Bonin, B., Capdevia, R., Jahn, B. M., Lameyre, J. & Wang, Y. 1994. The Kuiqi peralkaline granitic complex (SE China): petrology and geochemistry. Journal of Petrology 35, 9831015.CrossRefGoogle Scholar
Maruyama, S., Isozaki, Y., Kimura, G. & Terabayashi, M. 1997. Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present. Island Arc 6, 121–42.CrossRefGoogle Scholar
Maruyama, S. & Seno, T. 1986. Orogeny and relative plate motions: example of the Japanese islands. Tectonophysics 27, 305–29.CrossRefGoogle Scholar
McDonough, W. F. 1991. Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology. Philosophical Transactions of the Royal Society of London Series A — Mathematical Physical and Engineering Sciences 335, 407–18.Google Scholar
Morel, M. L. A., Nebel, O., Jacobsen, Y. J., Miller, J. S. & Vroon, P. Z. 2006. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology 255, 231–5.CrossRefGoogle Scholar
Mushkin, A., Navon, O., Halicz, L., Hartmann, G. & Stein, M. 2003. The petrogenesis of A-type magmas from the Amram Massif, southern Israel. Journal of Petrology 44, 815–32.CrossRefGoogle Scholar
Nasdala, L., Hofemister, W., Norberg, N., Martinson, J. M., Corfu, F., Dorr, W., Kamo, S. L., Kennedy, A. K., Kronz, A., Reiners, P. W., Frei, D., Kosler, J., Wan, Y. S., Gotze, J., Hager, T., Kroner, A. & Valley, J. W. 2008. Zircon M257 — a homogeneous natural reference material for the ion microprobe U–Pb analysis of zircon. Geostandards and Geoanalytical Research 32, 247–65.CrossRefGoogle Scholar
Patino Douce, A. E. P. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25, 743–6.2.3.CO;2>CrossRefGoogle Scholar
Plavsa, D., Coooins, A. S., Foden, J. F., Kropinski, L., Santosh, M., Chetty, T. R. K. & Clark, C. 2012. Delineating crustal domains in Peninsular India: age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block. Precambrian Research 198, 7793.CrossRefGoogle Scholar
Qiu, J. S., Wang, D. Z. & Mcinnes, B. I. A. 1999. Geochemistry and petrogenesis of the I- and A-type composite granite masses in the coastal area of Zhejiang and Fujian province. Acta Petrologica Sinica 15, 237–46 (in Chinese with English abstract).Google Scholar
Rämö, O. T. & Haapala, I. 1995. One hundred years of rapakivi granite. Mineralogy and Petrology 52, 129–85.CrossRefGoogle Scholar
Rudnick, R. L., Barth, M., Horn, I. & McDonough, W. F. 2000. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287, 278–81.CrossRefGoogle ScholarPubMed
Slama, J., Kosler, J., Condon, D. J., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. M. & Whitehouse, M. J. 2008. Plesovice zircon: a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Sun, W. D., Ding, X., Hu, Y. H. & Li, X. H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters 262, 533–42.CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalt: implications for mantle compositions and processes. Geological Society London Special Publications 42, 313–45.CrossRefGoogle Scholar
Sun, W. D., Zhang, H., Ling, M. X., Ding, X., Chung, S. L., Zhou, J., Yang, X. Y. & Fan, W. M. 2011 b. The genetic association of adakites and Cu–Au ore deposits. International Geology Review 53, 691703.CrossRefGoogle Scholar
Sun, Y., Ma, C. Q., Liu, Y. Y. & She, Z. B. 2011 a. Geochronological and geochemical constraints on the petrogenesis of late Triassic aluminous A-type granites in southeast China. Journal of Asian Earth Sciences 42, 1117–31.CrossRefGoogle Scholar
Turner, S. P., Foden, J. D. & Morrison, R. S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos 28, 151–79.CrossRefGoogle Scholar
Wang, F. Y., Ling, M. X., Ding, X., Hu, Y. H., Zhou, J. B., Yang, X. Y., Liang, H. Y., Fan, W. M. & Sun, W. D. 2011. Mesozoic large magmatic events and mineralization in SE China: oblique subduction of the Pacific plate. International Geology Review 53, 704–26.CrossRefGoogle Scholar
Wang, K. X., Sun, T., Chen, P. R., Ling, H. F. & Xiang, T. F. 2013. The geochronological and geochemical constraints on the petrogenesis of the Early Mesozoic A-type granite and diabase in northwestern Fujian province. Lithos 179, 364–81.CrossRefGoogle Scholar
Wang, L., Xu, C., Zhao, Z., Song, W. & Kynicky, J. 2015. Petrological and geochemical characteristics of Zhaibei granites in Nanling region, Southeast China: implications for REE mineralization. Ore Geology Reviews 64, 569–82.CrossRefGoogle Scholar
Wang, Q., Mcdermott, F., Xu, J. F., Bellon, H. & Zhu, Y. T. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33, 465–8.CrossRefGoogle Scholar
Wang, Q., Wyman, D. A., Xu, J. F., Zhao, Z. H., Jian, P., Xiong, X. L., Bao, Z. W., Li, C. F. & Bai, Z. H. 2006 a. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu–Au mineralization. Lithos 89, 424–46.CrossRefGoogle Scholar
Wang, Q., Xu, J. F., Jian, P., Bao, Z. W., Zhao, Z. H., Li, C. F., Xiong, X. L. & Ma, J. L. 2006 b. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization. Journal of Petrology 47, 119–44.CrossRefGoogle Scholar
Wang, Q., Xu, J. F., Zhao, Z. H., Bao, Z. W., Xu, W. & Xiong, X. L. 2004. Cretaceous high-potassium intrusive rocks in the Yueshan–Hongzhen area of east China: adakites in an extensional tectonic regime within a continent. Geochemical Journal 38, 417–34.CrossRefGoogle Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.CrossRefGoogle Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.CrossRefGoogle Scholar
Wong, J., Sun, M., Xing, G. F., Li, X. H., Zhao, G. C., Wong, K. & Wu, F. Y. 2011. Zircon U–Pb and Hf isotopic study of Mesozoic felsic rocks from eastern Zhejiang, South China: geochemical contrast between the Yangtze and Cathaysia blocks. Gondwana Research 19, 244–59.CrossRefGoogle Scholar
Wong, J., Sun, M., Xing, G., Li, X. H., Zhao, G., Wong, K., Yuan, C., Xia, X., Li, L. & Wu, F. 2009. Geochemical and zircon U–Pb and Hf isotopic study of the Baijuhuajian metaluminous A-type granite: extension at 125–100 Ma and its tectonic significance for South China. Lithos 112, 289305.CrossRefGoogle Scholar
Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H. & Xu, P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology 234, 105–26.CrossRefGoogle Scholar
Wu, Y. B. & Zheng, Y. F. 2004. Genesis of zircon and its constraints for the U–Pb age. Chinese Science Bulletin 49, 1589–604 (in Chinese).CrossRefGoogle Scholar
Xie, X., Xu, X. S., Zou, H. B., Jiang, S. Y., Zhang, M. & Qiu, J. S. 2006. Early J2 basalts in SE China: incipience of large-scale late Mesozoic magmatism. Science in China (Series D) 49, 796815.CrossRefGoogle Scholar
Xiong, X. L., Adam, J. & Green, T. H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chemical Geology 218, 339–59.CrossRefGoogle Scholar
Xu, X. S., Tang, H. F. & Zhou, X. M. 1999. Exploration for the lower crustal materials and granite genesis in southeast China. Acta Petrologica Sinica 15, 217–23 (in Chinese with English abstract).Google Scholar
Yang, S. Y., Jiang, S. Y., Zhao, K. D., Jiang, Y. H., Ling, H. F. & Luo, L. 2012. Geochronology, geochemistry and tectonic significance of two Early Cretaceous A-type granites in the Gan-Hang Belt, Southeast China. Lithos 150, 155–70.CrossRefGoogle Scholar
Zhao, K. D., Jiang, S. Y., Chen, W. F., Chen, P. R. & Ling, H. F. 2013. Zircon U–Pb chronology and elemental and Sr–Nd–Hf isotope geochemistry of two Triassic A-type granites in South China: implication for petrogenesis and Indosinian transtensional tectonism. Lithos 160–161, 292306.CrossRefGoogle Scholar
Zhao, K. D., Jiang, S. Y., Yang, S. Y., Dai, B. Z. & Lu, J. J. 2012. Mineral chemistry, trace elements and Sr–Nd–Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Research 22, 310–24.CrossRefGoogle Scholar
Zhou, J. C. & Chen, R. 2001. Geochemistry of late Mesozoic interaction between crust and mantle in southeastern Fujian Province. Geochimica 30, 547–58 (in Chinese with English abstract).Google Scholar
Zhou, Q., Jiang, Y. H., Zhao, P., Liao, S. Y. & Jin, G. D. 2012. Origin of the Dexing Cu-bearing porphyries, SE China: elemental and Sr–Nd–Pb–Hf isotopic constraints. International Geology Review 54, 572–92.CrossRefGoogle Scholar
Zhou, X. M. & Li, W. X. 2000. Origin of late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326, 269–87.CrossRefGoogle Scholar
Zhou, X. M., Sun, T., Shen, W. Z., Shu, L. S. & Niu, Y. L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29, 2633.CrossRefGoogle Scholar
Zhu, W. G., Zhong, H., Li, X. H., He, D. F., Song, X. Y., Ren, T., Chen, Z. Q., Sun, H. S. & Liao, J. Q. 2010. The early Jurassic mafic–ultramafic intrusion and A-type granite from northeastern Guangdong, SE China: age, origin, and tectonic significance. Lithos 119, 313–29.CrossRefGoogle Scholar