Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T16:56:07.269Z Has data issue: false hasContentIssue false

The genesis of uranium in manganese and phosphorite assemblages, Timna Basin, Israel

Published online by Cambridge University Press:  01 May 2009

Miryam Bar-Matthews
Affiliation:
Geochemistry Division, Geological Survey of Israel, 30 Malchei Israel Street, 95501 Jerusalem, Israel

Abstract

Uranium enrichments (up to 4000 ppm) occur in the manganese and phosphorite assemblages of the Lower Cambrian clastic marine sedimentary sequence, Timna Basin, Israel. Two types of mineralization assemblages can be defined. Sedimentary stratabound assemblages consist of uranium-enriched stratiform manganese and phosphatic laminae, diagenetic (type A) manganese nodules composed of pyrolusite and hollandite laminae and phosphorite lenses. Fission-track maps show that the uranium is homogeneously distributed within host manganese and phosphatic minerals of these assemblages. Epigenetic assemblages are mainly composed of manganese- and phosphorite-bearing veins and secondary (type B) manganese nodules with a coronadite dominant mineralogy. Uranium is depleted in these assemblages, relative to the sedimentary stratabound assemblages.

The distribution of manganese and phosphorite assemblages has a marked bimodal character. Alternation between manganese and phosphatic laminae in the stratiform deposits reflects cycles of oxidizing and reducing conditions brought about by mixing and stratification of the waters in the Timna semi-closed depositional basins. Compaction of wet sediments led to remobilization and the formation of uranium-enriched manganese nodules at the aerated sediment–water interface, and uranium-enriched phosphorite lenses below the interface in reducing conditions. Epigenesis occurred through the passage of solution fronts which recrystallized the manganese and phosphatic minerals and remobilized metallic elements, particularly uranium which was leached away and is still being remobilized today.

The mechanism of uranium uptake in manganese phases is shown most probably to involve adsorbtion of [(UO2)3. (OH)5]+ complexes on precipitating minerals. Uranium is enriched in both the pyrolusite and hollandite laminae of type A nodules, but is particularly concentrated in the former (4000–10000 ppm). Thermodynamic calculations of the relative stabilities of pyrolusite and hollandite suggest that the pH conditions of hollandite formation were close enough to the pH limit of efficient uranium adsorption to inhibit its uptake relative to pyrolusite.

Type
Articles
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschuler, Z. S. 1980. The geochemistry of trace elements in marine phosphorites – part I: characteristic abundances and enrichment. in Marine Phosphorites – Geochemistry, Occurrences, Genesis (ed. Bentor, Y. K.), pp. 1930. Society of Economic Paleontologists and Mineralogists, Special Publication no. 29.CrossRefGoogle Scholar
Altschuler, Z. S., Clarke, R. S. & Young, E. J. 1958. Geochemistry of uranium in apatite and phosphorite. United States Geological Survey, Professional Paper no. 314-D, 4590.Google Scholar
Ayalon, A., Beyth, M. & Vulkan, U. 1983. Geochemistry of Radioactive Mineralization Occurrences in the Timna Valley. Israel Geological Survey, Report M.E. 10/83. 37 pp.Google Scholar
Balistrieri, L. S. & Murray, J. W. 1982. The surface chemistry of MnO in major ion seawater. Geochimica et Cosmochimica Acta 46, 1041–52.CrossRefGoogle Scholar
Bar-Matthews, M. 1983 a. Mineralization of uranium in Timna Formation, Timna Valley. Israel Geological Society, Annual Meeting, 67.Google Scholar
Bar-Matthews, M. 1983 b. Coprecipitation of uranium and manganese in the Cambrian Timna Basin, Israel. Geological Society of America. Abstracts with Programs 15, 521.Google Scholar
Bar-Matthews, M. 1985. Mineralization: manganese, phosphate, uranium. Israel Geological Society, Annual Meeting, 118–22.Google Scholar
Bar-Matthews, M. & Matthews, A. 1986. 13C/12C, 18O/16O and fission track studies of the mechanism of uranium uptake in a sedimentary manganese-phosphate ore assemblage. Terra Cognita 6, 113.Google Scholar
Barton, P. H. Jr. 1956. Fixation of uranium in the oxidized base metal ores of the Goodsprings District, Clark Co., Nevada. Economic Geology 51, 178–91.CrossRefGoogle Scholar
Bartura, Y. 1966. Type sections of Paleozoic Formations in the Timna' area. Israel Geological Survey, Stratigraphic Section no. 3, 12 pp.Google Scholar
Bartura, Y. & Gross, S. 1966. On the Copper Minerals of the Timna& Formation – Timna'. Israel Geological Survey, Report M.p. 167/66.Google Scholar
Bentor, Y. K. 1952. Report on the Copper and Manganese Deposits in Wadi Menayeh. Israel Geological Survey Report. 34 pp.Google Scholar
Bentor, Y. K. 1956. The manganese occurrences at Timna (southern Israel). A lagoonal deposit. 20th International Geological Congress, Symposium Sobre Yacimientos de Manganeseo 2, 157–72.Google Scholar
Birch, G. F. 1980. A model of penecontemporaneous phosphatization by diagenetic and authigenic mechanisms from the western margin of Southern Africa. In Marine Phosphorite-Geochemistry, Occurrences, Genesis (ed. Bentor, Y. K.), pp. 79100. Society of Economic Paleontologists and Mineralogists, Special Publication no. 29.CrossRefGoogle Scholar
Bonatti, E., Fisher, D. E., Joensuu, O. & Rydell, H. S. 1972. Postdepositional mobility of some transition elements, phosphorus, uranium and thorium in deep sea sediments. Geochimica et Cosmochimica Acta 35, 189201.CrossRefGoogle Scholar
Burdige, D. J. & Gieskes, J. M. 1983. A pore water/solid phase diagenesis model for manganese in marine sediments. American Journal of Science 283, 2947.CrossRefGoogle Scholar
Burns, R. G. 1976. The uptake of cobalt into ferromanganese nodules, soils and synthetic manganese (IV) oxides. Geochimica et Cosmochimica Acta 40, 95102.CrossRefGoogle Scholar
Burns, R. G. & Burns, V. M. 1977. Mineralogy. In Marine Manganese Deposits (ed. Glasby, G. P.), pp. 185248. Amsterdam, Oxford, New York: Elsevier.CrossRefGoogle Scholar
Calvert, S. E. & Price, N. B. 1972. Diffusion and reaction profiles of dissolved manganese in the pore water of marine sediments. Earth and Planetary Science Letters 16, 245–9.CrossRefGoogle Scholar
Calvert, S. E. & Price, N. B. 1977. Shallow water, continental margin and lacustrine nodules. In Marine Manganese Deposits (ed. Glasby, G. P.), pp. 4586. Amsterdam, Oxford, New York: Elsevier.CrossRefGoogle Scholar
Cook, P. J. 1976. Sedimentary phosphate deposits. In Handbook of Strata-Bound and Stratiform Ore Deposits (ed. Wolf, K. H.), pp. 505–35. Amsterdam, London, New York: Elsevier.Google Scholar
Duchart, P., Calvert, S. E. & Price, N. B. 1973. Distribution of trace metals in the pore waters of shallow water marine sediments. Limnology and Oceanography 18, 605–10.CrossRefGoogle Scholar
Eaton, A. 1979. Impact of anoxia on Mn fluxes in Chesapeake Bay. Geochimica et Cosmochimica Acta 43, 429–32.CrossRefGoogle Scholar
Elderfield, H. 1977. The form of manganese and iron in marine sediments. In Marine Manganese Deposits (ed. Glasby, G. P.), pp. 269–90. Amsterdam, Oxford, New York: Elsevier.CrossRefGoogle Scholar
Emerson, S., Cranston, R. E. & Liss, P. S. 1979. Redox species in a reducing fjord, equilibrium and kinetic considerations. Deep Sea Research 26A,859–73.CrossRefGoogle Scholar
Friedman, G. M., Ali, S. A. & Krinsley, D. H. 1976. Dissolution of quartz accompanying carbonate precipitation and cementation in reefs: example from the Red Sea. Journal of Sedimentary Petrology 46, 970–3.Google Scholar
Graham, W. F., Bender, M. L. & Klinkhammer, G. P. 1976. Manganese in Narragansett Bay. Limnology and Oceanography 21, 665–73.CrossRefGoogle Scholar
Grill, E. V. 1978. The effect of sediment-water exchange on manganese deposition and nodule growth in Jervis Inlet, British Columbia. Geochimica et Cosmochimica Acta 42, 485–94.CrossRefGoogle Scholar
Grill, E. V. 1982. Kinetic and thermodynamic factors controlling manganese concentrations in oceanic waters. Geochimca et Cosmochimica Acta 46, 2435–46.CrossRefGoogle Scholar
Grill, E. V., Murray, J. W. & MacDonald, R. D. 1968. Manganese nodules from Jervis Inlet, a British Columbia Fjord. Syesis 1, 5763.Google Scholar
Healy, T. W., Herring, A. P. & Fuerstenau, D. W. 1966. The effect of crystal structure on the surface properties of a series of manganese dioxides. Journal of Colloid and Interface Science 21, 435–44.CrossRefGoogle Scholar
Hem, J. D. 1972. Chemical factors that influence the availability of iron and manganese in aqueous systems. Geological Society of America Bulletin 83, 443–50.CrossRefGoogle Scholar
Hem, J. D. 1981. Rates of manganese oxidation in aqueous systems. Geochimica et Cosmochimica Acta 45, 1369–74.CrossRefGoogle Scholar
Hsi, C.-K. D. & Langmuir, D. 1980. The effect of carbonate complexing on adsorption of uranyl by ferric oxyhyd-roxides. Geological Society of America. Abstracts with Programs 12, 452.Google Scholar
Hsi, C.-K. D. & Langmuir, D. 1985. Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site binding model. Geochimica et Cosmochimica Acta 19, 1931–41.Google Scholar
Kolodny, Y. & Kaplan, I. R. 1970. Uranium isotopes in sea floor phosphorites. Geochimica et Cosmochimica Acta 34, 324.CrossRefGoogle Scholar
Krauskopf, K. B. 1956. Factors controlling the concentrations of thirteen rare metals in seawater. Geochimica et Cosmochimica Acta 7, 132.Google Scholar
Krauskopf, K. B. 1957. Separation of manganese from iron in sedimentary processes. Geochimica et Cosmochimica Acta 12, 6184.CrossRefGoogle Scholar
Krinsley, D. H. & Doornkamp, J. C. 1973. Atlas of Quartz and Surface Textures. Cambridge University Press, 31pp.Google Scholar
Krom, M. D. & Berner, R. A. 1981. The diagenesis of phosphorus in nearshore marine sediment. Geochimica et Cosmochimica Acta 45, 207–16.CrossRefGoogle Scholar
Kunzendorf, H. & Friedrich, G. H. 1976 a. Uranium and thorium in deep sea manganese nodules from the Central Pacific. Transactions of the Institution of Mining and Metallurgy 85, 283–8.Google Scholar
Kunzendorf, H. & Friedrich, G. H. 1976 b. The distribution of U and Th in growth zones of manganese nodules. Geochimica et Cosmochimica Acta 40, 849–52.CrossRefGoogle Scholar
Kunzendorf, H., Glasby, G. P., Pluger, W. L. & Friedrich, G. H. 1982. The distribution of uranium in some Pacific manganese nodules and crusts. Uranium 1, 1936.Google Scholar
Langmuir, D. 1978. Uranium solution – mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta 42, 547–71.CrossRefGoogle Scholar
Li, Y. H., Bischoff, J. L. & Mathiew, G. 1969. The migration of manganese in the Arctic Basin sediments. Earth and Planetary Science Letters 7, 265–70.Google Scholar
Lynn, D. C. & Bonatti, E. 1965. Mobility of manganese in diagenesis of deep sea sediments. Marine Geology 3, 457–74.CrossRefGoogle Scholar
Manheim, F. T. 1965. Manganese-iron accumulations in the shallow marine environment. In Symposium on Marine Geochemistry (eds Schink, D. H. Corless, J. T.), pp. 217–76. Narragansett Marine Laboratory, University of Rhode Island, Occasional Publication no. 8.Google Scholar
Manheim, F. T., Pratt, R. M. & McFarlin, P. F. 1980. Composition and origin of phosphorite deposits of the Blake Plateau. In Marine Phosphorites – Geochemistry, Occurrence, Genesis (ed. Bentor, Y. K.), pp. 117–37. Society of Economic Paleontologists and Mineralogists, Special Publication no. 29.Google Scholar
Mason, B. & Moores, C. B. 1982. Principles of Geochemistry, 4th ed. John Willey, 352 p.Google Scholar
McArthur, J. M. 1978. Systematic variations in the content of Na, Sr, CO2, and SO4, in marine carbonate fluorapatite and their relation to weathering. Chemical Geology 21, 89112.CrossRefGoogle Scholar
McArthur, J. M. 1980. Post depositional alternation of the carbonate fluor-apatite phase of Moroccan phosphate. In Marine Phosphorite-Geochemistry, Occurrence, Genesis (ed. Bentor, Y. K.), pp. 5360. Society of Economic Paleontologists and Mineralogists, Special Publication no. 29.CrossRefGoogle Scholar
McArthur, J. M. 1985. Francolite geochemistry – compositional control during formation, diagenesis, meta-morphism and weathering. Geochimica et Cosmochimica Acta 49, 2335.CrossRefGoogle Scholar
Peacor, D. R. & Wedepohl, K. H. 1978. Manganese. In Handbook of Geochemistry (ed. Wedepohl, K. H.), pp. 25A–1. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Pratt, R. M. & McFarlin, P. F. 1966. Manganese pavements on the Blake Plateau. Science 151, 1080–2.CrossRefGoogle ScholarPubMed
Presley, B. J., Kolodny, Y., Nissenbaum, A. & Kaplan, I. R. 1972. Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia II. Trace element distribution in interstitial water and sediment. Geochimica et Cosmochimica Acta 36, 1073–90.CrossRefGoogle Scholar
Segev, A. 1984. Lithostratigraphy and paleogeography of the marine Cambrian sequence in Southern Israel and Southwestern Jordan. Israel Journal of Earth Sciences 33, 2633.Google Scholar
Segev, A. 1985. Lithofacies relations and model for the formation of the Sasgon Member, Israel Geological Society, Annual Meeting, 114–17.Google Scholar
Segev, A. & Steinitz, G. 1986. Dating of epigenetic manganese nodules and reset illites in the Cambrian Timna Formation, Southern Israel. Terra Cognita 6, 112–13.Google Scholar
Serebryakova, M. B. & Razumnaya, Y. G. 1962. Form of occurrence of uranium in apatite. Doklady Akademii Nauk SSR 143, 153–6 (English translation).Google Scholar
Spencer, D. W. & Brewer, P. G. 1971. Vertical advection, diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in waters of the Black Sea. Journal of Geophysical Research 76, 5877–92.CrossRefGoogle Scholar
Stumm, W. & Morgan, J. J. 1981. Aquatic Chemistry, 2nd. ed. New York: Willey Interscience. 583 pp.Google Scholar
Sturm, E. 1952. Possible origins of manganese ore in the Negev. Bulletin of the Research Council of Israel, 177–91.Google Scholar
Trefry, J. H. & Presley, B. J. 1982. Manganese fluxes from Mississippi Delta sediments. Geochimica et Cosmochimica Acta 46, 1715–26.CrossRefGoogle Scholar
Weissbrod, T. 1969. The Paleozoic of Israel and adjacent countries. Part I: The subsurface Paleozoic straligraphy of Southern Israel. Israel Geological Survey Bulletin no. 47, 22 pp.Google Scholar
Wurzburger, U. 1970. Copper silicates in the Timna ore deposits. Israel Journal of Chemistry 8, 443–57.CrossRefGoogle Scholar
Zielinski, R. A. 1980. Uranium in secondary silica: a possible exploration guide. Economic Geology 75, 592602.CrossRefGoogle Scholar