Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T01:42:46.366Z Has data issue: false hasContentIssue false

Fission-track analysis unravels the denudation history of the Bonar Range in the footwall of the Alpine Fault, South Island, New Zealand

Published online by Cambridge University Press:  07 April 2010

UWE RING*
Affiliation:
Department of Geological Sciences, University of Canterbury, Christchurch 8140, New Zealand
MATTHIAS BERNET
Affiliation:
LGCA, Université Joseph Fourier, 38041 Grenoble, France
*
*Author for correspondence: uwe.ring@canterbury.ac.nz

Abstract

We apply fission-track thermochronology to shed new light on the tectonic history of Zealandia during Late Cretaceous continental extension and the onset of Late Tertiary mountain building in the Southern Alps of New Zealand. The Southern Alps are one of the fastest erosionally exhuming mountain belts on Earth. Exhumation of the Bonar Range in Westland just to the northwest of the Alpine Fault is orders of magnitude slower. We report apatite and zircon fission-track ages from samples that were collected along an ENE–WSW profile across the central Bonar Range, parallel to the tectonic transport direction of a prominent ductile fabric in the basement gneiss. Zircon fission-track (ZFT) ages show a large spread from 121.9 ± 12.1 Ma to 74.9 ± 7.2 Ma (1σ errors). The youngest ZFT ages of 78 to 75 Ma occur at low elevations on either side of the Bonar Range and become older towards the top of the range, thereby showing a symmetric pattern parallel to the ENE-trending profile across the range. Age–elevation relationships suggest an exhumation rate of 50–100 m Ma−1. We relate the ZFT ages to slow erosion of a tectonically inactive spot in the Late Cretaceous magmatic arc of Zealandia. Therefore, the first main significance of the paper is that it demonstrates that not all of 110–90 Ma Zealandia was necessarily participating in extreme core complex-related extension but that there were enclaves of lithosphere that underwent slow erosion. The apatite fission-track (AFT) ages range from 11.1 ± 1.9 Ma to 5.3 ± 1.0 Ma and age–elevation relationships suggest an exhumation rate of c. 200 m Ma−1. We relate the AFT ages to the inception of transpressive motion across the Alpine Fault and modest exhumation in its footwall in Late Miocene times. If so, the second significant point of this paper is that transpressive motion across the Alpine Fault was already under way by c. 11 Ma.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. J. & Nathan, S. 1978. Cretaceous chronology of the Lower Buller Valley, South Island, New Zealand. New Zealand Journal of Geology and Geophysics 21, 455–62.CrossRefGoogle Scholar
Batt, G. E. & Braun, J. 1999. The tectonic evolution of the Southern Alps, New Zealand: insights from fully thermally coupled dynamic modeling. Geophysical Journal International 136, 403–20.CrossRefGoogle Scholar
Batt, G. E., Kohn, B. P., Braun, J., McDougall, I. & Ireland, T. R. 1999. New insight into the dynamic development of the Southern Alps, New Zealand, from detailed thermochronological investigation of the Mataketake Range pegmatites. In Exhumation Processes: Normal faulting, ductile flow and erosion (eds Ring, U., Brandon, M. T., Lister, G. S. & Willett, S.), pp. 261–82. Geological Society of London, Special Publication no. 154.Google Scholar
Bernet, M. 2009. A field-based estimate of the zircon fission-track closure temperature. Chemical Geology 259, 181–9.CrossRefGoogle Scholar
Berryman, K. R., Beanland, S., Cooper, A. F., Cutten, H. N., Norris, R. J. & Wood, P. R. 1992. The Alpine Fault, New Zealand: variation in Quaternary structural style and geomorphic expression. Annales Tectonicae 6, 126–63.Google Scholar
Brandon, M. T., Roden-Tice, M. K. & Garver, J. I. 1998. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin 110, 9851009.2.3.CO;2>CrossRefGoogle Scholar
Brichau, S., Ring, U., Carter, A., Bolhar, R., Monié, P., Stockli, D. & Brunel, M. 2008. Timing, slip rate, displacement and cooling history of the Mykonos detachment footwall, Cyclades, Greece, and implications for the opening of the Aegean Sea basin. Journal of the Geological Society, London 165, 263–77.CrossRefGoogle Scholar
Brichau, S., Ring, U., Carter, A. & Brunel, M. 2006. Constraining the long-term evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology. Earth and Planetary Science Letters 241, 293306.CrossRefGoogle Scholar
Brichau, S., Ring, U., Carter, A., Monié, P., Bolhar, R., Stockli, D. & Brunel, M. 2007. Extensional faulting on Tinos Island, Aegean Sea, Greece: How many detachments? Tectonics 25, TC4009, doi:10.1029/2006TC001969, 19 pp.Google Scholar
Brichau, S., Thomson, S. N. & Ring, U. 2010. Thermochronometric constraints on the tectonic evolution of the Serifos detachment, Aegean Sea, Greece. International Journal of Earth Sciences 99, 379–93.CrossRefGoogle Scholar
Cande, S. C. & Stock, J. M. 2004. Pacific–Antarctic–Australia motion and the formation of the Macquarie Plate. Geophysical Journal International 157, 399414.CrossRefGoogle Scholar
Chamberlain, C. P. & Poage, M. A. 2000. Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology 28, 115–18.2.0.CO;2>CrossRefGoogle Scholar
Cox, S. C. & Barrell, D. J. A. 2007. Geology of the Aoraki area. Institute of Geological & Nuclear Sciences, Geological Map 15, Scale 1:250 000. Lower Hutt: New Zealand, Institute of Geological & Nuclear Sciences.Google Scholar
Cutten, H. N. C. 1979. Rappahannock Group: Late Cenozoic sedimentation and tectonics contem poraneous with Alpine fault movement. New Zealand Journal of Geology and Geophysics 22, 535–53.CrossRefGoogle Scholar
Ehlers, T. A., Chaudhri, T., Kumar, S., Fuller, C. S., Willett, S. D., Ketcham, R. A., Brandon, M. T., Belton, D. X., Kohn, B. P., Gleadow, A. J. W., Dunai, T. J. & Fu, F. Q. 2005. Computational tools for low-temperature thermochronometer interpretation. In Low-temperature Thermochronology (eds Reiners, P. W. & Ehlers, T. A.), pp. 205–38. Reviews in Mineralogy and Geochemistry 58.Google Scholar
Fitzgerald, P. G., Sorkhabi, R. B. & Stump, E. 1995. Uplift and denudation of the central Alaska Range: a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. Journal of Geophysical Research 100, 20175–91.CrossRefGoogle Scholar
Flowers, R. M., Bowring, S. A., Tulloch, A. J. & Klepeis, K. A. 2005. Tempo of burial and exhumation within the deep roots of a magmatic arc, Fiordland, New Zealand. Geology 33, 1720.CrossRefGoogle Scholar
Foster, D. A. & John, B. E. 1999. Quantifying tectonic exhumation in an extensional orogen with thermochronology: examples from the southern Basin and Range province. In Exhumation Processes: Normal faulting, ductile flow and erosion (eds Ring, U., Brandon, M. T., Lister, G. S. & Willett, S.), pp. 343–64. Geological Society of London, Special Publication no. 154.Google Scholar
Furlong, K. P. & Kamp, P. J. J. 2009. The lithospheric geodynamics of plate boundary transpression in New Zealand: Initiating and emplacing subduction along the Hikurangi margin, and the tectonic evolution of the Alpine Fault system. Tectonophysics 474, 449–62.CrossRefGoogle Scholar
Gaina, C., Muller, D. R., Royer, J. Y., Stock, J., Hardebeck, J. & Symonds, P. 1998. The tectonic history of the Tasman Sea: a puzzle with 13 pieces. Journal of Geophysical Research 103, 12413–33.CrossRefGoogle Scholar
Garver, J. I. & Kamp, P. J. J. 2002. Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: Application to the Southern Alps, New Zealand. Tectonophysics 349, 203–19.CrossRefGoogle Scholar
Garver, J. I., Reiners, P. W., Walker, L. J., Ramage, J. M. & Perry, S. E. 2005. Implications for Timing of Andean Uplift from Thermal Resetting of Radiation-Damaged Zircon in the Cordillera Huayhuash, Northern Peru. The Journal of Geology 113, 117–38.CrossRefGoogle Scholar
Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C. W. & Güngör, T. 2001. An active bivergent rolling-hinge detachment system: the Central Menderes metamorphic core complex in western Turkey. Geology 29, 611–14.2.0.CO;2>CrossRefGoogle Scholar
Green, P. F., Duddy, I. R., Laslett, G. M., Hegarty, K. A., Gleadow, A. J. W. & Lovering, J. F. 1989. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology 79, 155–82.Google Scholar
Hollis, J. A., Clarke, G. L., Klepeis, K. A., Daczko, N. R. & Ireland, T. R. 2003. Geochronology and geochemistry of high-pressure granulites of the Arthur River Complex, Fiordland, New Zealand: Cretaceous magmatism and metamorphism on the palaeo-Pacific Margin. Journal of Metamorphic Geology 21, 299313.CrossRefGoogle Scholar
Hurford, A. J. & Green, P. F. 1983. The zeta age calibration of fission-track dating. Isotope Geoscience 1, 285317.Google Scholar
Ireland, T. R. & Gibson, G. M. 1998. SHRIMP monazite and zircon geochronology of high-grade metamorphism in New Zealand. Journal of Metamorphic Geology 16, 149–67.Google Scholar
John, B. E. & Howard, K. A. 1995. Rapid extension recorded by cooling-age patterns and brittle deformation, Naxos, Greece. Journal of Geophysical Research 100, 9969–79.CrossRefGoogle Scholar
Jongens, R. 2006. Gneissic rocks of the Bonar Range, central Westland, New Zealand. New Zealand Journal of Geology and Geophysics 49, 281–6.CrossRefGoogle Scholar
Kamp, P. J. J. 1986. The mid-Cenozoic Challenger Rift System of western New Zealand and its implications for the age of Alpine fault inception. Geological Society of America Bulletin 97, 255–81.2.0.CO;2>CrossRefGoogle Scholar
Kamp, P. J. J., Green, P. F. & Tippett, J. M. 1992. Tectonic architecture of the mountain front-foreland basin transition, South Island, New Zealand, assessed by fission track analysis. Tectonics 11, 98113.CrossRefGoogle Scholar
Kamp, P. J. J., Green, P. F. & White, S. H. 1989. Fission track analysis reveals character of collisional tectonics in New Zealand. Tectonics 8, 169–95.CrossRefGoogle Scholar
Kamp, P. J. J. & Tippet, J. M. 1993. Dynamics of Pacific plate crust in the South Island (New Zealand) zone of oblique continent–continent convergence. Journal of Geophysical Research 98, 10516–28.CrossRefGoogle Scholar
Ketcham, R. A., Donelick, R. A. & Carlson, W. D. 1999. Variability of apatite fission-track annealing kinetics; III, Extrapolation to geological time scales. American Mineralogist 84, 1235–55.CrossRefGoogle Scholar
Kimbrough, D. L. & Tulloch, A. J. 1989. Early Cretaceous age of orthogneiss from the Charleston Metamorphic Group, New Zealand. Earth and Planetary Science Letters 95, 130–40.CrossRefGoogle Scholar
Kimbrough, D. L., Tulloch, A. J., Coombs, D. S., Landis, C. A., Johnston, M. R. & Mattinson, J. M. 1994. Uranium-lead zircon ages from the Median Tectonic Zone, New Zealand. New Zealand Journal of Geology and Geophysics 37, 393419.CrossRefGoogle Scholar
Kimbrough, D. L., Tulloch, A. J. & Rattenbury, M. S. 1994. Late Jurassic–early Cretaceous metamorphic age of Fraser Complex migmatite, Westland, New Zealand. New Zealand Journal of Geology and Geophysics 37, 137–42.CrossRefGoogle Scholar
Kumerics, C., Ring, U., Brichau, S. & Glodny, J. 2005. The extensional Messaria shear zone and associated brittle detachment faults, Aegean Sea, Greece. Journal of the Geological Society, London 162, 701–21.CrossRefGoogle Scholar
Laird, M. G. 1993. Cretaceous continental rifts: New Zealand region 1993. Sedimentary Basins of the World. In South Pacific sedimentary basins (ed. Ballance, P. F.), pp. 3749. Amsterdam: Elsevier.Google Scholar
Laird, M. G. 1994. Geological aspects of the opening of the Tasman Sea. In The Evolution of the Tasman Sea Basin (eds van der Lingen, G. J., Swanson, K. & Muir, R. J.), pp. 117. Rotterdam: Balkema.Google Scholar
Miller, E. L., Dumitru, T. A., Brown, R. W. & Gans, P. B. 1999. Rapid Miocene slip on the Snake Range-Deep Creek Range fault system, east-central Nevada. Geological Society of America Bulletin 111, 886905.2.3.CO;2>CrossRefGoogle Scholar
Montgomery, D. R. & Brandon, M. T. 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters 201, 481–9.CrossRefGoogle Scholar
Morgan, P. 1908. The geology of the Mikonui Subdivision, North Westland. New Zealand Geological Survey Bulletin 6, 175 pp.Google Scholar
Mortimer, N., Tulloch, A. J., Spark, R. N., Walker, N. W., Ladley, E., Allibone, A. & Kimbrough, D. L. 1999. Overview of the Median Batholith, New Zealand: A new interpretation of the geology of the Median Tectonic Zone and adjacent rocks. Journal of African Earth Sciences 29, 257–68.CrossRefGoogle Scholar
Nathan, S., Rattenbury, M. S. & Suggate, R. P. 2002. Geology of the Greymouth area. Institute of Geological & Nuclear Sciences, Geological Map 12, Scale 1:250 000. Lower Hutt, New Zealand: Institute of Geological & Nuclear Sciences.Google Scholar
Norris, R. J. & Cooper, A. F. 2001. Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand. Journal of Structural Geology 23, 507–20.CrossRefGoogle Scholar
Norris, R. J., Koons, P. O. & Cooper, A. F. 1990. The obliquely-convergent plate boundary in the South Island of New Zealand: Implications for ancient collision zones. Journal of Structural Geology 12, 715–25.CrossRefGoogle Scholar
Rahn, M. K., Brandon, M. T., Batt, G. E. & Garver, J. I. 2004. A zero-damage model for fission-track annealing in zircon. American Mineralogist 89, 473–84.CrossRefGoogle Scholar
Rattenbury, M. S. 1987. Timing of mylonitisation west of the Alpine Fault, central Westland, New Zealand. New Zealand Journal of Geology and Geophysics 30, 287–97.CrossRefGoogle Scholar
Rattenbury, M. S. 1991. The Fraser Complex: high-grade metamorphic, igneous and mylonitic rocks in central Westland, New Zealand. New Zealand Journal of Geology and Geophysics 34, 2333.CrossRefGoogle Scholar
Reiners, P. W. & Brandon, M. T. 2006. Using thermochronology to understand orogenic evolution. Annual Reviews of Earth and Planetary Sciences 24, 419–66.CrossRefGoogle Scholar
Ring, U. 2008. Extreme uplift of the Rwenzori Mountains, Uganda, East African Rift: Structural framework and possible role of glaciations. Tectonics 27, TC4018, doi:10.1029/2007TC002176.CrossRefGoogle Scholar
Ring, U., Brandon, M. T., Willett, S. & Lister, G. S. 1999. Exhumation processes. In Exhumation Processes: Normal faulting, ductile flow and erosion (eds Ring, U., Brandon, M. T., Lister, G. S. & Willett, S.), pp. 128. Geological Society of London, Special Publication no. 154.Google Scholar
Ring, U., Johnson, C., Hetzel, R. & Gessner, K. 2003. Tectonic denudation of a Late Cretaceous–Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geological Magazine 140, 421–41.CrossRefGoogle Scholar
Ring, U., Layer, P. W. & Reischmann, T. 2001. Miocene high-pressure metamorphism in the Cyclades and Crete, Aegean Sea, Greece: Evidence for large-magnitude displacement on the Cretan detachment. Geology 29, 395–8.2.0.CO;2>CrossRefGoogle Scholar
Ring, U., Thomson, S. N. & Bröcker, M. 2003. Fast extension but little exhumation: the Vari detachment in the Cyclades, Greece. Geological Magazine 140, 245–52.CrossRefGoogle Scholar
Spell, T. L., McDougall, I. & Tulloch, A. J. 2000. Thermochronologic constraints on the breakup of the Pacific Gondwana margin: The Paparoa metamorphic core complex, South Island, New Zealand. Tectonics 19, 433–51.CrossRefGoogle Scholar
Tagami, T., Galbraith, R. F., Yamada, R. & Laslett, G. M. 1998. Revised annealing kinetics of fission tracks in zircon and geological implications In Advances in Fission-Track Geochronology (eds Van den Haute, P. & De Corte, F.), pp. 99112. New York: Springer.CrossRefGoogle Scholar
Thomson, S. N. & Ring, U. 2006. Thermochronologic evaluation of post-collision extension in the Anatolide Orogen, western Turkey. Tectonics 25, TC3005, doi:10.1029/2005TC001833.CrossRefGoogle Scholar
Thomson, S. N., Ring, U., Brichau, S., Glodny, J. & Will, T. W. 2009. Timing and nature of formation of the Ios metamorphic core complex, southern Cyclades, Greece. In Extending a Continent: Architecture, Rheological Coupling, and Heat Budget (eds Ring, U. & Wernicke, B.), pp. 169–78. Geological Society of London, Special Publication no. 321.Google Scholar
Tippett, J. M. & Kamp, P. J. J. 1993. The role of faulting in rock uplift in the Southern Alps, New Zealand. New Zealand Journal of Geology and Geophysics 36, 497504.CrossRefGoogle Scholar
Tulloch, A. J. 1983. Granitoid rocks of New Zealand – a brief review. Geological Society of America Memoir 159, 520.CrossRefGoogle Scholar
Tulloch, A. J. 1995. Precious metal mineralisation associated with the Cretaceous Paparoa metamorphic core complex, New Zealand. PACRIM Congress 1995. Australasian Institute of Mining and Metallurgy Publication 95/9, 575–80.Google Scholar
Tulloch, A. J. & Kimbrough, D. L. 1989. The Paparoa Metamorphic Core Complex, Westland-Nelson, New Zealand: Cretaceous extension associated with fragmentation of the Pacific margin of Gondwana. Tectonics 8, 1217–34.CrossRefGoogle Scholar
Tulloch, A. J., Ramezani, J., Mortimer, N., Mortensen, J., Van Den Bogaard, P. & Maas, R. 2009. Cretaceous felsic volcanism in New Zealand and Lord Howe Rise (Zealandia) as a precursor to final Gondwana breakup. In Extending a Continent: Architecture, Rheological Coupling, and Heat Budget (eds Ring, U. & Wernicke, B.), pp. 89118. Geological Society of London, Special Publication no. 321.Google Scholar
Walcott, R. I. 1998. Modes of oblique compression: Late Cenozoic tectonics of the South Island of New Zealand. Reviews of Geophysics 36, 126.CrossRefGoogle Scholar
Wellman, H. W. 1955. New Zealand quaternary tectonics. Geologische Rundschau 43, 248–57.CrossRefGoogle Scholar
Wells, M. L., Snee, L. W. & Blythe, A. E. 2000. Dating of major normal fault systems using thermochronology: An example from the Raft River detachment, Basin and Range, western United States. Journal of Geophysical Research 105, 16303–27.CrossRefGoogle Scholar
White, S. H. & Green, P. F. 1986. Tectonic development of the Alpine Fault zone, New Zealand: A fission-track study. Geology 14, 124–7.2.0.CO;2>CrossRefGoogle Scholar
Willett, S. D. 1999. Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research 104, 28957–81.CrossRefGoogle Scholar