Skip to main content Accessibility help
×
Home

Deformation partitioning in mountain belts: insights from analogue modelling experiments and the Taiwan collisional orogen

  • Jacques Malavieille (a1) (a2), Stephane Dominguez (a1) (a2), Chia-Yu Lu (a2) (a3) (a4), Chih-Tung Chen (a5) and Elena Konstantinovskaya (a4)...

Abstract

Many orogens on the planet result from plate convergence involving subduction of a continental margin. The lithosphere is strongly deformed during mountain building involving subduction of a plate composed generally of accreted continental margin units and some fragments of downgoing oceanic crust and mantle. A complex deformation involving strong partitioning of deformation modes and kinematics produces crustal shortening, accompanied by crustal thickening. Partitioning depends on three main factors: (1) rheologic layering of the lithosphere; (2) interaction between tectonics and surface processes; (3) subduction kinematics and 3D geometry of continental margins (oblique convergence, shape of indenters). Here we present an original view and discussion on the impact of deformation partitioning on the structure and evolution of orogens by examining the Taiwan mountain belt as a case study. Major unsolved questions are addressed through geological observations from the Taiwan orogen and insights from analogue models integrating surface processes. Some of these questions include: What is the role played by décollements or weak zones in crustal deformation and what is the impact of structural heterogeneities inherited from the early extensional history of a rifted passive continental margin? What is the relationship between deep underplating, induced uplift and flow of crustal material during erosion (finite strain evolution during wedge growth)? Are syn-convergent normal faults an effect of deformation partitioning and erosion? What is the role of strain partitioning on the location of major seismogenic faults in active mountain belts? What can be learned about the long-term and the present-day evolution of Taiwan?

Copyright

Corresponding author

Author for correspondence: Jacques Malavieille, Emails: malavie@gm.univ-montp2.fr; J.Malavie@gmail.com

References

Hide All
Angelier, J, Bergerat, F, Chu, H-T and Lee, TQ (1990) Tectonic analysis and the evolution of a curved collision belt: the Hsuehshan Range, northern Taiwan. Tectonophysics 183, 7796.
Angelier, J, Chang, T-Y, Hu, J-C, Chang, C-P, Siame, L, Lee, J-C, Deffontaines, B, Chu, H-T and Lu, C-Y (2009) Does extrusion occur at both tips of the Taiwan collision belt? Insights from active deformation studies in the Ilan Plain and Pingtung Plain regions. Tectonophysics 466, 356–76.
Avouac, J-P (2015) Mountain building: from earthquakes to geologic deformation. In Treatise on Geophysics, 2nd ed. (ed. Schubert, G), pp. 381432. Oxford: Elsevier.
Barr, TD and Dahlen, FA (1989) Brittle frictional mountain building. 2. Thermal structure and heat budget. Journal of Geophysical Research 94, 3923–47.
Barr, TD, Dahlen, FA and McPhail, DC (1991) Brittle frictional mountain building 3: Low grade metamorphism. Journal of Geophysical Research 96, 10319–38.
Beaumont, C, Ellis, S, Hamilton, J and Fullsack, P (1996) Mechanical model for subduction collision tectonics of Alpine-type compressional orogens. Geology 24, 675–8.
Beyssac, O, Negro, F, Simoes, M, Chan, Y-C and Chen, Y-G (2008) High-pressure metamorphism in Taiwan: from oceanic subduction to arc-continent collision. Terra Nova 20, 118–25. doi: 10.1111/j.1365-3121.2008.00796.x.
Beyssac, O, Simoes, M, Avouac, JP, Farley, KA, Chen, YG, Chan, YC and Goffe, B (2007) Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics 26, TC6001. doi: 10.1029/2006TC002064.
Bonnet, C, Malavieille, J and Mosar, J (2007) Interactions between tectonics, erosion, and sedimentation during the recent evolution of the Alpine orogen: analogue modeling insights. Tectonics 26, TC6016. doi: 10.1029/2006TC002048.
Bonnet, C, Malavieille, J and Mosar, J (2008) Surface processes versus kinematics of thrust belts: impact on rates of erosion, sedimentation, and exhumation – insights from analogue models. Bulletin de la Société géologique de France 179, 297314.
Boyer, S and Elliott, D (1982) Thrust systems. American Association of Petroleum Geologists Bulletin 66, 1196–230. doi: 10.1306/03B5A77D-16D1-11D7-8645000102C1865D.
Brandon, MT (2004) The Cascadia subduction wedge: the role of accretion, uplift, and erosion. In Earth Structure: An Introduction to Structural Geology and Tectonics, 2nd ed. (eds van der Pluijm, BA and Marshak, S), pp. 566–74. New York: WW Norton & Company.
Brown, D, Alvarez-Marron, J, Biete, C, Hao, K-C, Camanni, G and Ho, C-W (2017) How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south-central Taiwan fold-and-thrust belt. Tectonics 361275–94. doi: 10.1002/2017TC004475.
Burchfiel, BC, Chen, Z, Hodges, KV, Liu, Y, Royden, LH, Deng, C and Xu, J (1992) The South Tibet Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt. Geological Society of America Special Paper 269, 41 pp.
Burg, JP, Van Den Driessche, J and Brun, JP (1994) Syn- to post-thickening extension: mode and consequences. Comptes Rendus de l’Academie des Sciences Paris, Serie II 319, 1019–32.
Byrne, T, Chan, Y-C, Rau, R-J, Lu, C-Y, Lee, Y-H, Wang, Y-J, Brown, D and Ryan, P (2011) The arc–continent collision in Taiwan. Arc-Continent Collision 4, 213–45. doi: 10.1007/978-3-540-88558-0_8.
Calassou, S, Larroque, C and Malavieille, J (1993) Transfer zones of deformation in thrust wedges: an experimental study. Tectonophysics 221, 325–44.
Cawood, AJ and Bond, CE (2018) 3D mechanical stratigraphy of a deformed multi-layer: linking sedimentary architecture and strain partitioning. Journal of Structural Geology 106, 5469. doi: 10.1016/j.jsg.2017.11.011.
Chang, C-P, Angelier, J and Huang, C-Y (2009) Evolution of subduction indicated by melanges in Taiwan. In Subduction Zone Geodynamics (eds Lallemand, S, Funiciello, F and Lallemand, S), pp 207–25. Berlin: Springer. doi: 10.1007/978-3-540-87974-9.
Chang, C-P, Angelier, J, Lee, T-Q and Huang, C-Y (2003) From continental margin extension to collision orogen: structural development and tectonic rotation of the Hengchun peninsula, southern Taiwan. Tectonophysics 361, 6182.
Chang, C-P, Angelier, J and Lu, C-Y (2007) Polyphase deformation in a newly emerged accretionary prism: folding, faulting and rotation in the southern Taiwan mountain range. Tectonophysics 466, 393408. doi: 10.1016/j.tecto.2007.11.002.
Chemenda, AI, Lallemand, SE and Bokun, A (2000) Strain partitioning and interplate friction in oblique subduction zones: constraints provided by experimental modelling. Journal of Geophysical Research Atmospheres 105, 5567–81. doi: 10.1029/1999JB900332.
Chemenda, AI, Mattauer, M, Malavieille, J and Bokun, A (1995) A mechanism for syn-collisional deep rock exhumation and associated normal faulting: results from physical modeling. Earth and Planetary Sciences Letters 132, 225–32.
Chemenda, AI, Yang, RK, Hsieh, C-H and Groholsky, AL (1997) Evolutionary model for the Taiwan collision based on physical modeling. Tectonophysics 274, 253–74.
Chemenda, AI, Yang, RK, Konstantinovskaya, EA and Ivanov, GM (2001) New results from physical modeling of arc-continent collision in Taiwan: evolutionary model. Tectonophysics 333, 159–78.
Chen, C-T, Chan, Y-C, Lo, C-H, Malavieille, J, Lu, C-Y, Tang, J-T and Lee, Y-H (2018) Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history. Journal of Asian Earth Sciences 152, 8090. doi: 10.1016/j.jseaes.2017.11.030.
Chen, W-H, Huang, C-Y, Yan, Y, Dilek, Y, Chen, D, Wang, M-H, Zhang, X, Lan, Q and Yu, M (2017) Stratigraphy and provenance of forearc sequences in the Lichi Mélange, Coastal Range: geological records of the active Taiwan arc-continent collision. Journal of Geophysical Research: Solid Earth 122, 7408–36. doi: 10.1002/2017JB014378.
Cheng, W-B, Wang, C, Shyu, C-T and Shin, T-C (1998) A three dimensional Vp model of the southeastern Taiwan area and its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences 9, 425–52.
Chi, W-C, Chen, L, Liu, C-S and Brookfield, M (2014) Development of arc–continent collision mélanges: linking onshore geological and offshore geophysical observations of the Pliocene Lichi Mélange, southern Taiwan and northern Luzon arc, western Pacific. Tectonophysics 636, 7082. doi: 10.1016/j.tecto.2014.08.009.
Chi, W-C and Reed, DL (2008) Evolution of shallow crustal thermal structure from subduction to collision: an example from Taiwan. Geological Society of America Bulletin 120, 679–90.
Chi, W-C, Reed, DL, Moore, G, Nguyan, T, Liu, C-S and Lundberg, N (2003) Tectonic wedging along the rear of the offshore Taiwan accretionary prism. Tectonophysics 374, 199217. doi: 10.1016/j.tecto.2003.08.004.
Clark, MB, Fisher, DM and Lu, C-Y (1992) Strain variations in the Eocene and older rocks exposed along the Central and Southern Cross-Island Highways, Taiwan. Acta Geologica Taiwanica 30, 110.
Clark, MB, Fisher, DM, Lu, C-Y and Chen, C-H (1993) Kinematic analyses of the Hsuehshan Range, Taiwan: a large-scale pop-up structure. Tectonics 12, 205–17.
Crespi, J, Chan, Y-C and Swaim, M (1996) Synorogenic extension and exhumation of the Taiwan hinterland. Geology 24, 247–50.
Dahlen, FA (1984) Noncohesive critical Coulomb wedges: an exact solution. Journal of Geophysical Research 89, 10125–33.
Dahlen, FA and Barr, TD (1989) Brittle frictional mountain building: 1. Deformation and mechanical energy budget. Journal of Geophysical Research 94, 3906–22.
Dahlen, FA, Suppe, J and Davis, D (1984) Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory. Journal of Geophysical Research 89, 10087–101.
Dahlstrom, CDA (1969) Balanced cross sections. Canadian Journal of Earth Sciences 6, 743–57.
Dal Zilio, L, Van Dinther, Y, Gerya, TV and Pranger, CC (2018) Seismic behavior of mountain belts controlled by plate convergence rate. Earth and Planetary Science Letters 482, 8192. doi: 10.1016/j.epsl.2017.10.053.
Dalmayrac, B and Molnar, P (1981) Parallel thrusts and normal faulting in Peru and constraints on the state of stress. Earth and Planetary Science Letters 55, 473–81.
Davis, D, Suppe, J and Dahlen, FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research 88, 1153–72.
Dewey, JF (1988) Extensional collapse of orogens. Tectonics 7, 1123–39. doi: 10.1029/TC007i006p01123.
Dewey, JF and Bird, JM (1970) Mountain belts and the new global tectonics. Journal of Geophysical Research 75, 2625–47. doi: 10.1029/JB075i014p02625.
Dias, R and Ribeiro, A (1994) Constriction in a transpressive regime: an example in the Iberian branch of the Ibero-Armorican arc. Journal of Structural Geology 16, 1543–54.
Dilek, Y (2006) Collision tectonics of the Eastern Mediterranean region: causes and consequences. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia (eds Dilek, Y and Pavlides, S), pp. 113. Geological Society of America Special Paper 409. doi: 10.1130/2006.2409(01).
Dilek, Y and Moores, EM (1999) A Tibetan model for the early Tertiary western United States. Journal of the Geological Society, London 156, 929–41. doi: 10.1144/gsjgs.156.5.0929.
Dominguez, S, Avouac, J-P and Michel, R (2003) Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images: implications for the seismic cycle along the Western Foothills of central Taiwan. Journal of Geophysical Research 108, 2083. doi: 10.1029/2001JB000951.
Dominguez, S, Lallemand, S, Malavieille, J and Schnurle, P (1998a) Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system: insights from marine observations and sand-box experiments. Marine Geophysical Researches 20, 383402.
Dominguez, S, Lallemand, SE, Malavieille, J and Von Huene, R (1998b) Upper plate deformation associated with seamount subduction. Tectonophysics 293, 207–24.
Dominguez, S, Malavieille, J and Lallemand, SE (2000) Deformation of accretionary wedges in response to seamount subduction: insights from sandbox experiments. Tectonics 19, 182–96.
Ellis, M and Watkinson, AJ (1987) Orogen-parallel extension and oblique tectonics: the relation between stretching lineations and relative plate motions. Geology 15, 1022–6. doi: 10.1130/0091-7613(1987)15<1022:OEAOTT>2.0.CO;2
Engdahl, ER, Van Der Hilst, R and Buland, R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth relocation. Bulletin of the Seismological Society of America 88, 722–43.
Ernst, WG and Jahn, BM (1987) Crustal accretion and metamorphism in Taiwan, a post-Paleozoic mobile belt. Philosophical Transactions of the Royal Society of London: Series A, Mathematical and Physical Sciences 321, 129–61.
Faccenda, M, Gerya, TV and Chakraborty, S (2008) Styles of post-subduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos 103, 257–87. doi: 10.1016/j.lithos.2007.09.009.
Faure, M, Lu, C-Y and Chu, H-T (1991) Ductile deformation and Miocene nappe-stacking in Taiwan related to motion of the Philippine Sea Plate. Tectonophysics 198, 95105. doi: 10.1016/0040-1951(91)90134-E.
Feng, L, Bartholomew, MJ and Choi, E (2015) Spatial arrangement of décollements as a control on the development of thrust faults. Journal of Structural Geology 75, 4959. doi: 10.1016/j.jsg.2015.03.002.
Ferrill, DA, Morris, AP, McGinnis, RN, Smart, KJ, Wigginton, SS and Hill, NJ (2017) Mechanical stratigraphy and normal faulting. Journal of Structural Geology 94, 275302. doi: 10.1016/j.jsg.2016.11.010.
Festa, A, Dilek, Y and Pini, GA (2012) Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations: redefining and classifying mélanges. Tectonophysics 568–569, 724.
Festa, A, Pini, GA, Dilek, Y and Codegone, G (2010) Mélanges and mélange forming processes: historical review and new concepts. International Geology Review 52, 1040–105.
Festa, A, Pini, GA, Ogata, K and Dilek, Y (2019) Diagnostic features and field-criteria in recognition of tectonic, sedimentary and diapiric mélanges in orogenic belts and exhumed subduction-accretion complexes. Gondwana Research, published online 31 January 2019. doi: 10.1016/j.gr.2019.01.003.
Fisher, DM (1999) Orogen-parallel extension in the eastern Central Range of Taiwan. Journal of the Geological Society of China 42, 4158.
Fisher, DM and Byrne, T (1992) Strain variations in an ancient accretionary wedge: implications for forearc evolution. Tectonics 11, 330–47.
Fisher, DM, Lu, C-Y and Chu, H-T (2002) Taiwan Slate Belt: insights into the ductile interior of an arc-continent collision. In Geology and Geophysics of an Arc-Continent Collision, Taiwan (Byrne, TB and Liu, C-S), pp. 93106. Geological Society of America Special Paper 358.
Fisher, DM, Willett, S, En-Chao, Y and Clark, MB (2007) Cleavage fronts and fans as reflections of orogen stress and kinematics in Taiwan. Geology 35, 65–8. doi: 10.1130/G22850A.1.
Fitch, TJ (1972) Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific. Journal of Geophysical Research 77, 4432–60. doi: 10.1029/JB077i023p04432.
Fuller, CW, Willett, SD, Fisher, D and Lu, C-Y (2006)A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics 425, 124.
Graveleau, F, Hurtrez, J-E, Dominguez, S and Malavieille, J (2011) A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes. Tectonophysics 513, 6887. doi: 10.1016/j.tecto.2011.09.029.
Graveleau, F, Malavieille, J and Dominguez, S (2012) Experimental modelling of orogenic wedges: a review. Tectonophysics 538–540, 166.
Graveleau, F, Strak, V, Dominguez, S, Malavieille, J, Chatton, M, Manighetti, I and Petit, C (2015) Experimental modelling of tectonics–erosion–sedimentation interactions in compressional, extensional, and strike-slip settings. Geomorphology 244, 146–68. doi: 10.1016/j.geomorph.2015.02.011.
Guerit, L, Dominguez, S, Malavieille, J and Castelltort, S (2016) Deformation of an experimental drainage network in oblique collision. Tectonophysics 693, 210–22. doi: 10.1016/j.tecto.2016.04.016.
Gutscher, MA, Klaeschen, D, Flueh, E and Malavieille, J (2001) Non-Coulomb “wrong-way” thrusting, and natural hazard in Cascadia. Geology 29, 379–82.
Gutscher, MA, Kukowski, N, Malavieille, J and Lallemand, S (1996) Cyclical behavior of thrust wedges: insights from high basal friction sandbox experiments. Geology 24, 135–8.
Gutscher, MA, Kukowski, N, Malavieille, J and Lallemand, S (1998) Episodic imbricate thrusting and underthrusting; analogue experiments and mechanical analysis applied to the Alaskan accretionary wedge. Journal of Geophysical Research 103, 10161–76.
Harris, R (2011) The nature of the Banda Arc–continent collision in the Timor region. In Arc–Continent Collision (eds Brown, D and Ryan, PD), pp. 163211. Berlin, Heidelberg: Springer-Verlag, doi: 10.1007/978-3-540-88558-0_7.
Ho, C-S (1986) A synthesis of the geologic evolution of Taiwan. Tectonophysics 125, 116.
Hoth, S, Adam, J, Kukowski, N and Oncken, O (2006) Influence of erosion on the kinematics of bivergent orogens: results from scaled sandbox simulations. Tectonics, Climate, and Landscape Evolution 398, 201–25. doi: 10.1130/2006.2398(12).
Hwang, W-T and Wang, C-Y (1993) Sequential thrusting model for mountain building: constraints from geology and heat flow of Taiwan. Journal of Geophysical Research 98, 9963–73.
Jolivet, L, Dubois, R, Fournier, M, Michard, A and Jourdan, C (1990) Ductile extension in Alpine Corsica. Geology 18, 1007–10.
Konstantinovskaia, E and Malavieille, J (2005) Erosion and exhumation in accretionary orogens: experimental and geological approaches. Geochemistry, Geophysics, and Geosystems 6, Q02006. doi: 10.1029/2004GC000794.
Konstantinovskaya, E and Malavieille, J (2011) Thrust wedges with décollement levels and syntectonic erosion: a view from analogue models. Tectonophysics 502, 336–50.
Konstantinovskaya, EA, Rodriguez, D, Kirkwood, D, Harris, LB and Thériault, R (2009) Effects of basement structure, sedimentation and erosion on thrust wedge geometry: an example from the Quebec Appalachians and analogue models. Bulletin of Canadian Petroleum Geology 57, 3462.
Kukowski, N, Lallemand, SE, Malavieille, J, Gutscher, MA and Reston, TJ (2002) Mechanical decoupling and basal duplex formation observed in sandbox experiments with application to the Mediterranean Ridge accretionary complex. Marine Geology 186, 2942.
Kukowski, N, Von Huene, R, Malavieille, J and Lallemand, S (1994) Sediment accretion against a buttress beneath the Peruvian continental margin as simulated by sandbox modeling. Geologische Rundschau 83, 822–31.
Kusznir, NJ and Park, RG (1984) Intraplate lithosphere deformation and the strength of the lithosphere. Geophysical Journal of the Royal Astronomical Society 79, 513–38. doi: 10.1111/j.1365-246X.1984.tb02238.x.
Kusznir, NJ, Vita-Finzi, C, Whitmarsh, RB, England, P, Bott, MHP, Govers, R, Cartwright, J and Murrell, S (1991) The distribution of stress with depth in the lithosphere: thermo-rheological and geodynamic constraints [and discussion]. Philosophical Transactions: Physical Sciences and Engineering 337, 95110.
Lallemand, S and Liu, C-S (1998) Geodynamic implications of present-day kinematics in the southern Ryukyus. Journal of the Geological Society of China 41, 551–64.
Lallemand, SE, Liu, CS, Dominguez, S, Schnurle, P, Malavieille, J and the ACT Scientific Crew (1999) Trench parallel stretching and folding of forearc basins and lateral migration of accretionary wedge in the southern Ryukyus: a case of strain partition caused by oblique convergence. Tectonics 8, 231–47.
Lallemand, SE, Malavieille, J and Calassou, S (1992) Effects of oceanic ridge subduction on accretionary wedges: experimental modeling and marine observations. Tectonics 11, 1301–13.
Lallemand, SE, Schnurle, P and Malavieille, J (1994) Coulomb theory applied to accretionary and non-accretionary wedges—possible causes for tectonic erosion and/or frontal accretion. Journal of Geophysical Research 99, 12033–55.
Larroque, C, Calassou, S, Malavieille, J and Chanier, F (1995) Experimental modeling of forearc basin development during accretionary wedge growth. Basin Research 7, 255–68.
Laubach, S, Olson, J and Gross, M (2009) Mechanical and fracture stratigraphy. American Association of Petroleum Geologists Bulletin 93, 1413–26. doi: 10.1306/07270909094.
Lee, J-C, Angelier, J and Chu, H-T (1997) Polyphase history and kinematics of a complex major fault zone in the northern Taiwan mountain belt: the Lishan Fault. Tectonophysics 274, 97115.
Lester, R, McIntosh, K, Van Avendonk, HJA, Lavier, L, Liu, C-S and Wang, TK (2013) Crustal accretion in the Manila trench accretionary wedge at the transition from subduction to mountain-building in Taiwan. Earth and Planetary Science Letters 375, 430–40. doi: 10.1016/j.epsl.2013.06.007.
Lu, C-Y and Hsü, K-J (1992) Tectonic evolution of the Taiwan mountain belt. Petroleum Geology of Taiwan 27, 2146.
Lu, C-Y, Lee, T-Q, Angelier, J, Lee, JC and Chu, H-TJ (2001) Anisotropic deformation and rotation tectonics during oblique convergence: examples from northeastern Taiwan. Western Pacific Earth Sciences 1, 4372.
Lu, C-Y and Malavieille, J (1994) Oblique convergence, indentation and tectonic rotation in Taiwan mountain belt: insights from experimental modeling. Earth and Planetary Science Letters 121, 477–94.
Lu, C-Y, Chan, Y-C, Lee, JC, Chu, H-T and Malavieille, J (2002) Active continental growth under transpressional tectonics – example from southeastern Taiwan. Western Pacific Earth Sciences 2, 3746.
Malavieille, J (1984) Modélisation expérimentale des chevauchements imbriqués: application aux chaînes de montagnes. Bulletin de la Société géologique de France 26, 129–38.
Malavieille, J (1987) Extensional shearing deformation and kilometer scale “a” type folds in a cordilleran Metamorphic Core Complex (Raft River Mountains, Northwestern Utah). Tectonics 6, 423–48.
Malavieille, J (1993) Late orogenic extension in mountain belts: insights from the Basin and Range and the Late Paleozoic Variscan belt. Tectonics 12, 1115–30.
Malavieille, J (2010) Impact of erosion, sedimentation and structural inheritance on the structure and kinematics of orogenic wedges: analogue models and case studies. GSA Today 20, 410. doi: 10.1130/GSATG48A.1.
Malavieille, J, Guilhot, P, Costa, S, Lardeaux, JM and Gardien, V (1990) Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St-Etienne Upper Carboniferous Basin. Tectonophysics 177, 139–50.
Malavieille, J and Konstantinovskaya, E (2010) Impact of surface processes on the growth of orogenic wedges: insights from analogue models and case studies. Geotectonics 44, 541–58.
Malavieille, J, Lacassin, R and Mattauer, M (1984) Signification tectonique des linéations d’allongement dans les Alpes occidentales. Bulletin de la Société géologique de France 26, 895906.
Malavieille, J, Lallemand, SE, Dominguez, S, Deschamps, A,Lu, C-Y, Liu, C-S, Schnuürle, P and the ACT Scientific Crew (2002) Arc–continent collision in Taiwan: new marine observations and tectonic evolution. In Geology and Geophysics of an Arc-Continent Collision, Taiwan (eds Byrne, TB and Liu, C-S), pp. 187211. Geological Society of America Special Paper 358.
Malavieille, J, Molli, G, Genti, M, Dominguez, S, Taboada, A, Beyssac, O, Vitale-Brovarone, A, Lu, C-Y and Chen, C-T (2016) Formation of ophiolite-bearing tectono-sedimentary mélanges in accretionary wedges by gravity driven submarine erosion: insights from analogue models and case studies. Journal of Geodynamics 100, 87103. doi: 10.1016/j.jog.2016.05.008.
Malavieille, J and Trullenque, G (2009) Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: insights from analogue modeling. Tectonophysics 466, 377–94.
Manatschal, G and Bernoulli, D (1999) Architecture and tectonic evolution of nonvolcanic margins: present-day Galicia and ancient Adria. Tectonics 18, 1099–119.
Marshak, S (2004) Salients, recesses, arcs, orocline, and syntaxes – a review of ideas concerning the formation of map-view curves in fold-thrust belts. In Thrust Tectonics and Hydrocarbon Systems (ed. McClay, KR), pp. 131–56. American Association of Petroleum Geologists Memoir vol. 82. Tulsa: American Association of Petroleum Geologists.
Martinez, A, Malavieille, J, Lallemand, SE and Collot, JY (2002) Partition de la déformation dans un prisme d’accrétion sédimentaire en convergence oblique: approche expérimentale. Bulletin de la Société géologique de France 173, 1724.
McIntosh, K, Nakamura, Y, Wang, T-K, Shih, R-C, Chen, A and Liu, C-S (2005) Crustal-scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics 401, 2354. doi: 10.1016/j.tecto.2005.02.015.
McIntosh, K, Van Avendonk, H, Lavier, L, Lester, WR, Eakin, D, Wu, F, Liu, C-S and Lee, C-S (2013) Inversion of a hyper-extended rifted margin in the southern Central Range of Taiwan. Geology 41, 871–4. doi: 10.1130/G34402.1.
Mesalles, L, Mouthereau, F, Bernet, M, Chang, C-P, Lin, A, Fillon, C and Sengelen, X (2014) From submarine continental accretion to arc-continent orogenic evolution: the thermal record in southern Taiwan. Geology 42, 907–10. doi: 10.1130/G35854.1.
Mondro, CA, Fisher, D and Yeh, E-C (2017) Strain histories from the eastern Central Range of Taiwan: a record of advection through a collisional orogen. Tectonophysics 705, 111. doi: 10.1016/j.tecto.2017.03.007.
Mouthereau, F, Deffontaines, B, Lacombe, O and Angelier, J (2002) Variation along the strike of the Taiwan thrust belt: basement control on structural style, wedge geometry, and kinematics. In Geology and Geophysics of an Arc-Continent Collision, Taiwan (eds Byrne, TB and Liu, C-S), pp. 3154. Geological Society of America Special Paper 358.
Norton, MG (1986) Late Caledonide extension in western Norway: a response to extreme crustal thickening. Tectonics 5, 195204. doi: 10.1029/TC005i002p00195.
Page, BM and Suppe, J (1981) The Pliocene Lichi Melange of Taiwan: its plate-tectonic and olistostromal origin. American Journal of Science 281, 193227.
Perez-Estaun, A, Martinez Catalan, JR and Bastida, F (1991) Crustal thickening and deformation sequence in the footwall to the suture of the Variscan Belt of northwest Spain. Tectonophysics 191, 243–53.
Perrin, C, Clemenzi, L, Malavieille, J, Molli, G, Taboada, A and Dominguez, S (2013) Impact of erosion and décollements on large scale faulting and folding in orogenic wedges: analogue models and case studies. Journal of Geological Society, London 170, 893904. doi: 10.1144/jgs2013-012.
Pfiffner, OA, Ellis, S and Beaumont, C (2000) Collision tectonics in the Swiss Alps: insight from geodynamic modeling. Tectonics 19, 1065–94.
Platt, JP (1986) Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geological Society of America Bulletin 97, 1037–53.
Platt, JP (1993) Mechanics of oblique convergence. Journal of Geophysical Research 98, 16239–56.
Platt, JP (2000) Calibrating the bulk rheology of active obliquely convergent thrust belts and forearc wedges from surface profiles and velocity distributions. Tectonics 19, 529–48. doi: 10.1029/1999TC001121.
Pulver, MH, Crespi, JM and Byrne, TB (2002) Lateral extrusion in a transpressional collision zone: an example from the pre-Tertiary metamorphic basement of Taiwan. In Geology and Geophysics of an Arc-Continent Collision, Taiwan (eds Byrne, TB and Liu, C-S), pp. 107–20. Geological Society of America Special Paper 358.
Ranalli, G (1997) Rheology of the lithosphere in space and time. In Orogeny Through Time (eds Burg, J-P and Ford, M), pp. 1937. Geological Society of London, Special Publication no. 121. doi: 10.1144/GSL.SP.1997.121.01.02.
Reed, DL, Lundberg, N, Liu, CS and Kuo, BY (1992) Structural relations along the margins of the offshore Taiwan accretionary wedge: implications for accretion and crustal kinematics. Acta Geologica Taiwanica 30, 105–22.
Roosmawati, N and Harris, R (2009) Surface uplift history of the incipient Banda arc-continent collision: geology and synorogenic foraminifera of Rote and Savu Islands, Indonesia. Tectonophysics 479, 95110. doi: 10.1016/j.tecto.2009.04.009.
Sella, GF, Dixon, TH and Mao, A (2002) REVEL: a model for recent plate velocities from space geodesy. Journal of Geophysical Research 107, 11-1–11-30. doi: 10.1029/2000JB000033.
Selverstone, J (1988) Evidence for east-west crustal extension in the Eastern Alps: implications for the unroofing of the Tauern Window. Tectonics 7, 87105.
Seno, T (1977) The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian Plate. Tectonophysics 42, 209–25.
Seno, T, Stein, S and Grip, AE (1993) A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geologic data. Journal of Geophysical Research 98, 17941–8.
Shyu, JB, Sieh, K, Chen, Y-G, Chuang, R-Y, Wang, YU and Chung, L-H (2008) Geomorphology of the southernmost Longitudinal Valley fault: implications for evolution of the active suture of eastern Taiwan. Tectonics 27, TC1019. doi: 10.1029/2006TC002060.
Shyu, JBH, Sieh, K, Chen, Y-G and Chung, L-H (2006) Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. Geological Society of America Bulletin 118, 1447–62. doi: 10.1130/B25905.1.
Shyu, JBH, Sieh, K, Chen, Y-G and Liu, C-S (2005) Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research 110, B08402. doi: 10.1029/2004JB003251.
Silver, E, Ellis, M, Breen, N and Shipley, T (1985) Comments on the growth of accretionary wedges. Geology 13, 69.
Silver, EA and Reed, DL (1988) Backthrusting in accretionary wedges. Journal of Geophysical Research 93, 3116–26. doi: 10.1029/JB093iB04p03116.
Simoes, M and Avouac, JP (2006) Investigating the kinematics of mountain building in Taiwan from the spatiotemporal evolution of the foreland basin and Western Foothills. Journal of Geophysical Research 111, B10401. doi: 10.1029/2005JB004209.
Simoes, M, Avouac, JP, Beyssac, O, Goffe, B, Farley, KA and Chen, Y-G (2007) Mountain building in Taiwan: a thermokinematic model. Journal of Geophysical Research 112, B11405. doi: 10.1029/2006JB004824.
Simoes, M, Beyssac, O and Chen, YG (2012) Late Cenozoic metamorphism and mountain building in Taiwan: a review. Journal of Asian Earth Sciences 46, 92119. doi: 10.1016/j.jseaes.2011.11.009.
Stanley, RS, Hill, LB, Chang, HC and Hu, HN (1981) A transect through the metamorphic core of the central mountains, southern Taiwan. Geological Society of China Memoir 4, 443–73.
Stern, RJ and Gerya, T (2017) Subduction initiation in nature and models: a review. Tectonophysics 746, 173–98. doi: 10.1016/j.tecto.2017.10.014.
Stockmal, GS, Beaumont, C, Nguyen, M and Lee, B (2007) Mechanics of thin-skinned fold and thrust belts: insights from numerical models. In Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price (eds Sears, JW, Harms, TA and Evenchick, CA), pp. 6398. Geological Society of America Special Paper 433.
Suppe, J (1981) Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China 4, 6789.
Suppe, J (1984) Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Memoir of the Geological Society of China 6, 2133.
Suppe, J (1986) Reactivated normal faults in the western Taiwan fold-thrust belt. Memoir of the Geological Society of China 7, 187200.
Tapponnier, P (1977) Evolution tectonique du système alpin en Méditerranée: poinconnement et écrasement rigide-plastique. Bulletin de la Société géologique de France 19, 437–60. doi: 10.2113/gssgfbull.S7-XIX.3.437.
Tapponier, P and Molnar, P (1977) Active faulting and tectonics in China. Journal of Geophysical Research 82, 2905–30.
Teng, LS (1990) Late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183, 5776.
Teng, LS (1996) Extensional collapse of the northern Taiwan mountain belt. Geology 24, 949–52.
Teng, LS, Wang, Y, Tang, C-H, Huang, C-Y, Huang, T-C, Yu, M-S and Ke, A (1991) Tectonic aspects of the Paleogene depositional basin of northern Taiwan. Proceedings of the Geological Society of China 34, 313–35.
Tillman, KS and Byrne, TB (1995) Kinematic analysis of the Taiwan Slate Belt. Tectonics 14, 322–41.
Willett, SD, Beaumont, C and Fullsack, P (1993) Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21, 371–4.
Willett, SD and Brandon, M (2002) On steady states in mountain belts. Geology 30, 175–8.
Willett, S, Schlunegger, F and Picotti, V (2006) Messinian climate change and erosional destruction of the central European Alps. Geology 34, 613–6. doi: 10.1130/G22280.1.
Willett, SD, Slingerland, R and Hovius, N (2001) Uplift, shortening and steady state topography in active mountain belts. American Journal of Science 301, 455–85.
Willis, B (1894) The Mechanics of Appalachian Structure. U.S. Geological Survey. Extract from the Thirteenth Annual Report of the Director, 1891–’92, pp. 211–81. Washington: Government Printing Office.
Yamato, P, Mouthereau, F and Burov, E (2009) Taiwan mountain building: insights from 2-D thermomechanical modelling of a rheologically stratified lithosphere. Geophysical Journal International 176, 307–26.
Yu, S-B, Chen, H-Y and Kuo, L-C (1997) Velocity field of GPS Stations in the Taiwan area. Tectonophysics 274, 4159.
Yu, S-B, Kuo, L-C, Punongbayan, RS and Ramos, EG (1999) GPS observation of crustal deformation in the Taiwan–Luzon region. Geophysical Research Letters 26, 923–6.

Keywords

Type Description Title
WORD
Supplementary materials

Malavieille et al. supplementary material
Malavieille et al. supplementary material 1

 Word (12 KB)
12 KB

Deformation partitioning in mountain belts: insights from analogue modelling experiments and the Taiwan collisional orogen

  • Jacques Malavieille (a1) (a2), Stephane Dominguez (a1) (a2), Chia-Yu Lu (a2) (a3) (a4), Chih-Tung Chen (a5) and Elena Konstantinovskaya (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed