Skip to main content Accessibility help
×
Home

Characterization of exogenic fulgurites from an archaeological site in Tiedra, Valladolid, Spain

  • Pablo Martín-Ramos (a1) (a2), Francisco PSC Gil (a2), Francisco J Martín-Gil (a1) and Jesús Martín-Gil (a3)

Abstract

Studies on type-V fulgurites are very sparse in the literature. This work reports on the characterization of natural exogenic fulgurites found at the archaeological site of Cerro de la Ermita (Tiedra, Valladolid, Spain), which was firstly a Celtiberian and then a Roman locum sacrum. Data from X-ray powder diffraction, X-ray fluorescence spectroscopy, Fourier-transform infrared spectroscopy and Raman spectroscopy suggest that the fulgurites consist of naquite, piroxenes, iron oxides, shocked quartz and neo-formed cristobalite.

Copyright

Corresponding author

Author for correspondence: Pablo Martín-Ramos, Email: pmr@unizar.es

References

Hide All
Abrunhosa, MJ, Gonçalves, AA & da Cruz, DJ (1995) Occorrência de rochas vitrificadas no dólmen do “Picoto do Vasco” (Vila Nova de Paiva, Viseu). Estudios Pré-Históricos 3, 167–85.
Bokobza, L, Bruneel, J-L & Couzi, M (2015) Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C 1, 7794.
Brusentsova, TN, Peale, RE, Maukonen, D, Harlow, GE, Boesenberg, JS & Ebel, D (2010) Far infrared spectroscopy of carbonate minerals. American Mineralogist 95, 1515–22.
Carter, EA, Hargreaves, MD, Kee, TP, Pasek, MA & Edwards, HGM (2010a) A Raman spectroscopic study of a fulgurite. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, 3087–97.
Carter, EA, Pasek, MA, Smith, T, Kee, TP, Hines, P & Edwards, HGM (2010b) Rapid Raman mapping of a fulgurite. Analytical and Bioanalytical Chemistry 397, 2647–58.
Cook, M, Watson, F & Cook, G (2014) Burning questions: new insights into vitrified forts. In 17th Iron Age Research Student Symposium (eds Erskine, GJR, Jacobsson, P, Miller, P and Stetkiewicz, S), pp. 149–56. Edinburgh: Archaeopress Publishing Ltd.
Daly, TK, Buseck, PR, Williams, P & Lewis, CF (1993) Fullerenes from a fulgurite. Science 259, 1599–601.
Elmi, C, Chen, J, Goldsby, D & Gieré, R (2017) Mineralogical and compositional features of rock fulgurites: a record of lightning effects on granite. American Mineralogist 102, 1470–81.
Essene, EJ & Fisher, DC (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234, 189–93.
Foster, RD & Walker, RF (1984) Quantitative determination of crystalline silica in respirable-size dust samples by infrared spectrophotometry. The Analyst 109, 1117–27.
Frank, O, Jehlička, J & Hamplová, V. (2006) Search for fullerenes in geological carbonaceous samples altered by experimental lightning. Fullerenes, Nanotubes and Carbon Nanostructures 11, 257–67.
Gailliot, MP (2016) Petrified lightning. Rocks & Minerals 55, 1317.
Garcia-Guinea, J, Furio, M, Fernandez-Hernan, M, Bustillo, MA, Crespo-Feo, E, Correcher, V, Sanchez-Muñoz, L, Matesanz, E & Gucsik, A (2009) The quartzofeldspathic fulgurite of Bustaviejo (Madrid): cathodoluminescence and Raman emission. In AIP Conference Proceedings 1163, Mainz, Germany, pp. 128–34.
Heymann, D (1998) Search for C60 fullerene in char produced on a Norway spruce by lightning. Fullerene Science and Technology 6, 1079–86.
Jeoung, SC, Kim, D, Kim, S & Kim, SK (1995) Triplet state Raman spectra of C60 and C70. Chemical Physics Letters 241, 528–32.
Jiménez Fuentes, E & García Marcos, JM (1980) Explicación de la hoja nº 370: Toro (Zamora y Valladolid). Madrid: Instituto Geológico y Minero de España.
Kassi, AM, Kasi, AK, Friis, H & Kakar, DM (2013) Occurrences of rock-fulgurites associated with steel pylons of the overhead electric transmission line at Tor Zawar, Ziarat District and Jang Tor Ghar, Muslim Bagh, Pakistan. Turkish Journal of Earth Sciences 22, 1010–19.
Lefrant, S, Faulques, E, Godon, C, Buisson, JP, Auban-Senzier, P, Jerome, D, Fabre, C, Rassat, A, Zahab, A, Lambert, JM & Bernier, P (1993) Isotope effects in the Raman spectra of 13C enriched C60. Synthetic Metals 56, 3044–9.
Macrobius, AAT & Kaster, RA (2011) Saturnalia. Cambridge, MA: Harvard University Press.
Martin, Crespo T, Lozano, Fernandez RP & Gonzalez, Laguna R (2009) The fulgurite of Torre de Moncorvo (Portugal): description and analysis of the glass. European Journal of Mineralogy 21(4), 783–94.
Martín-Gil, J & Martin-Gil, FJ (2001) ¿Un fanum romano en Tiedra? Investigación y Ciencia 239, 29. https://www.researchgate.net/publication/260426668_Hispania_Romana_Un_fanum_en_Tiedra
Martinez-Ramirez, S, Diaz, L, Camacho, JJ & Viehland, D (2013) CW CO2-laser-induced formation of fulgurite on lime-pozzolan mortar. Journal of the American Ceramic Society 96, 2824–30.
Mohling, JW (2004) Exogenic fulgurites from Elko County, Nevada: a new class of fulgurite associated with large soil-gravel fulgurite tubes. Rocks & Minerals 79, 334–40.
Nunn, S & Nishikida, K (2008) Advanced ATR Correction Algorithm – Application Note 50581. Madison, WI: ThermoScientific.
Parthasarathy, G, Kunwar, AC & Srinivasan, R (2001) Occurrence of moganite-rich chalcedony in Deccan flood basalts, Killari, Maharashtra, India. European Journal of Mineralogy 13, 127–34.
Pasek, MA, Block, K & Pasek, V (2012) Fulgurite morphology: a classification scheme and clues to formation. Contributions to Mineralogy and Petrology 164, 477–92.
Pasek, MA & Pasek, VD (2017) The forensics of fulgurite formation. Mineralogy and Petrology 112, 185–98.
Prawer, S, Nugent, KW & Jamieson, DN (1998) The Raman spectrum of amorphous diamond. Diamond and Related Materials 7, 106–10.
Romano, DG & Voyatzis, ME (2010) Excavating at the birthplace of Zeus: the Mt. Lykaion Excavation and Survey Project. Expedition: The Magazine of the University of Pennsylvania 52, 921.
Saikia, BJ, Parthasarathy, G, Sarmah, NC & Baruah, GD (2008) Fourier-transform infrared spectroscopic characterization of naturally occurring glassy fulgurites. Bulletin of Materials Science 31, 155–8.
Sanz-Mínguez, C & Sobrino-González, M (2013) Tiedra: el cerro de la Ermita. Vaccea 2012 (no. 6), 26–31.
Sheffer, A, Melosh, H, Jarnot, B & Lauretta, D (2003) Reduction of silicates at high temperature: fulgurites and thermodynamic modeling. In Lunar and Planetary Science Conference, League City, Texas, pp. 12.
Temple, PA & Hathaway, CE (1973) Multiphonon Raman spectrum of silicon. Physical Review B 7, 3685–97.
Walter, M (2011) An exogenic fulgurite occurrence in Oswego, Oswego County, New York. Rocks & Minerals 86, 264–70.

Keywords

Characterization of exogenic fulgurites from an archaeological site in Tiedra, Valladolid, Spain

  • Pablo Martín-Ramos (a1) (a2), Francisco PSC Gil (a2), Francisco J Martín-Gil (a1) and Jesús Martín-Gil (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed