Hostname: page-component-7d8f8d645b-h5t26 Total loading time: 0 Render date: 2023-05-28T12:02:44.731Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

The integration of palaeomagnetism, the geological record and mantle tomography in the location of ancient continents

Published online by Cambridge University Press:  13 December 2017

TROND H. TORSVIK*
Affiliation:
Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0316 Oslo, Norway Helmholtz Centre Potsdam, GFZ, 14473 Potsdam, Germany NGU Geodynamics, 7040 Trondheim, Norway School of Geosciences, University of Witwatersrand, Witwatersrand, South Africa
L. ROBIN M. COCKS
Affiliation:
Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
*
Author for correspondence: t.h.torsvik@geo.uio.no

Abstract

Constructing palaeogeographical maps is best achieved through the integration of data from hotspotting (since the Cretaceous), palaeomagnetism (including ocean-floor magnetic anomalies since the Jurassic), and the analysis of fossils and identification of their faunal and floral provinces; as well as a host of other geological information, not least the characters of the rocks themselves. Recently developed techniques now also allow us to determine more objectively the palaeolongitude of continents from the time of Pangaea onwards, which palaeomagnetism alone does not reveal. This together with new methods to estimate true polar wander have led to hybrid mantle plate motion frames that demonstrate that TUZO and JASON, two antipodal thermochemical piles in the deep mantle, have been stable for at least 300 Ma, and where deep plumes sourcing large igneous provinces and kimberlites are mostly derived from their margins. This remarkable observation has led to the plume generation zone reconstruction method which exploits the fundamental link between surface and deep mantle processes to allow determination of palaeolongitudes, unlocking a way forward in modelling absolute plate motions prior to the assembly of Pangaea. The plume generation zone method is a novel way to derive ‘absolute’ plate motions in a mantle reference frame before Pangaea, but the technique assumes that the margins of TUZO and JASON did not move much and that Earth was a degree-2 planet, as today.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. B., Jamtveit, B., Dewey, J. F. & Swensson, E. 1991. Subduction and eduction of continental crust: major mechanism during continent-continent collision and orogenic extensional collapse, a model based on the south Caledonides. Terra Nova 3, 303–10.CrossRefGoogle Scholar
Andersen, T., Kristoffersen, M. & Elburg, M. A. 2016. How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study. Gondwana Research 34, 12148.CrossRefGoogle Scholar
Becker, T. W. & Boschi, I. 2002. A comparison of tomographic and geodynamic mantle models. Geochemistry, Geophysics, Geosystems 3, 1003. doi: 10.1029/2001GC000168.CrossRefGoogle Scholar
Boucot, A. J., Xu, C. & Scotese, C. R. 2013. Phanerozoic paleoclimate: an atlas of lithologic indicators of climate. SEPM Concepts in Sedimentology and Paleontology 11, 346 pp.Google Scholar
Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A. et al. (2011). Next-generation plate-tectonic reconstructions using GPlates In Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences (eds Keller, G. R. & Baru, C.), pp. 95113. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Buiter, S. J. H. & Torsvik, T. H. 2014. A review of Wilson Cycle plate margins. Gondwana Research 26, 627–33. doi: 10.1016/j.gr.2014.02.007.CrossRefGoogle Scholar
Burke, K. 2011. Plate tectonics, the Wilson Cycle, and mantle plumes: geodynamics from the top. Annual Review of Earth and Planetary Sciences 39, 129.CrossRefGoogle Scholar
Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. 2008. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth and Planetary Sciences 265, 4960.CrossRefGoogle Scholar
Burke, K., & Torsvik, T. H. 2004. Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth and Planetary Science Letters 227, 531–8.CrossRefGoogle Scholar
Christiansen, J. L. & Stouge, S. 1999. Oceanic circulation as an element in palaeogeographical reconstructions: the Arenig (early Ordovician) as an example. Terra Nova 11, 73–8.CrossRefGoogle Scholar
Domeier, M. 2015. A tectonic scenario for the Iapetus and Rheic Oceans. Gondwana Research 36, 275–95. doi: 10.1016/j.gr.2015.08.003.CrossRefGoogle Scholar
Domeier, M., Shephard, G. E., Jakob, J., Gaina, C., Doubrovine, P. V. & Torsvik, T. H. 2017. Intraoceanic subduction spanned the Pacific in the Late Cretaceous-Paleocene. Science Advances 3, eaao2303. doi: 10.1126/sciadv.aao2303.CrossRefGoogle ScholarPubMed
Domeier, M. & Torsvik, T. H. 2014. Plate tectonics in the late Paleozoic. Geoscience Frontiers 5, 303–50.CrossRefGoogle Scholar
Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. 2012. Absolute plate motions in a reference frame defined by moving hotspots in the Pacific, Atlantic and Indian oceans. Journal of Geophysical Research 117, B09101. doi: 10.1029/2011JB009072.CrossRefGoogle Scholar
Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. 2016. A failure to reject: testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochemistry, Geophysics, Geosystems 17, 1130–63. doi: 10.1002/2015GC006044.CrossRefGoogle Scholar
Evans, D. A. D. 2003. True polar wander and supercontinents. Tectonophysics 362, 303–20.CrossRefGoogle Scholar
Evans, D.A.D. 2013. Reconstructing pre-Pangean supercontinents. Geological Society of America Bulletin 125, 1735–51.CrossRefGoogle Scholar
Fortey, R. A. & Cocks, L. R. M. 2003. Palaeontological evidence bearing on Ordovician-Silurian continental reconstructions. Earth-Science Reviews 61, 245307.CrossRefGoogle Scholar
Garnero, E. J., Lay, T. & McNamara, A. 2007. Implications of lower mantle structural heterogeneity for existence and nature of whole mantle plumes. In Plates, Plumes and Planetary Processes (eds Foulger, G. R. & Jordy, D. M.), pp. 79102. Geological Society of America, Special Paper 430.Google Scholar
Gibbons, A. D., Whittaker, J. M. & Müller, R. D. 2013. The breakup of East Gondwana: assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model. Journal of Geophysical Research 118, 115.Google Scholar
Gurnis, M., Turner, M., Zahirovic, S. et al. 2012. Plate tectonic reconstructions with continuously closing plates. Computers & Geosciences 38, 3542.CrossRefGoogle Scholar
Hughes, N. F. (ed.) 1973. Organisms and Continents through Time. Special Papers in Palaeontology 12, 334 pp.Google Scholar
Lekic, V., Cottar, S., Dziewonski, A. & Romanowicz, B. 2012. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth and Planetary Science Letters 357, 6877.CrossRefGoogle Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S. et al. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Li, Z. X., Evans, D. A. D. & Murphy, J. B. (eds.) 2016. Supercontinent Cycles through Earth History. Geological Society of London, Special Publication no. 424. doi: 10.1144/SP424.12.Google Scholar
Li, Z. X., & Zhong, S. 2009. Supercontinent-superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics. Physics of the Earth and Planetary Interiors 176, 143–56.CrossRefGoogle Scholar
Matthews, K., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M. & Müller, R. D. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change 146, 226–50.CrossRefGoogle Scholar
McCall, G. J. H. 2006. The Vendian (Ediacaran) in the geological record: enigmas in geology's prelude to the Cambrian explosion. Earth-Science Reviews 77, 1229.CrossRefGoogle Scholar
McKerrow, W. S. & Scotese, C. R. (eds) 1990. Palaeozoic Palaeogeography and Biogeogeography. Geological Society of London, Memoir 12, 435 pp.Google Scholar
Meert, J. G. 2014. Strange attractors, spiritual interlopers and lonely wanderers: the search for pre-Pangæan supercontinents. Geoscience Frontiers 5, 155–66.CrossRefGoogle Scholar
Mitchell, R. N., Kilian, T. M. & Evans, D. A. D. 2012. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature 482, 208–11.CrossRefGoogle ScholarPubMed
Rasmussen, M. Ø., Ullmann, V., Jakobsen, K. G. et al. 2016. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports 6, 18884. doi: 10.1038/srep18884.CrossRefGoogle ScholarPubMed
Scotese, C. R. 1997. Palaeogeographic Atlas. PALEOMAP progress report 90-0497. Arlington, TX: University of Texas at Arlington.Google Scholar
Sigloch, K. & Mihalynuk, M. G. 2013. Intra-oceanic subduction shaped the assembly of Cordilleran North America. Nature 496, 5056.CrossRefGoogle ScholarPubMed
Shi, G. R. 2006. The marine Permian of east and northeast Asia: an overview of biostratigraphy, palaeobiogeography and palaeogeographical implications. Journal of Asian Earth Sciences 26, 175206.CrossRefGoogle Scholar
Steinberger, B. & Torsvik, T. H. 2008. Absolute plate motions and true polar wander. Nature 452, 620–3.CrossRefGoogle ScholarPubMed
Torsvik, T. H., Burke, K. Steinberger, B. et al. 2010. Diamonds sourced by plumes from the core-mantle boundary. Nature 466, 352–55.CrossRefGoogle Scholar
Torsvik, T. H. & Cocks, L. R. M. 2017. Earth History and Palaeogeography. Cambridge: Cambridge University Press, 317 pp.CrossRefGoogle Scholar
Torsvik, T. H. & Domeier, M. 2017. Correspondence: Numerical modelling of the PERM anomaly and the Emeishan Large Igneous Province. Nature Communications 8. doi: 10.1038/s41467-017-00125-2.CrossRefGoogle ScholarPubMed
Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B. & Gaina, C. 2008a. Global plate motion frames: toward a unified model. Reviews of Geophysics 46, RG3004. doi: 10.1029/2007RG000227.CrossRefGoogle Scholar
Torsvik, T. H. & Rehnström, E. F. 2003. The Tornquist Sea and Baltica-Avalonia docking. Tectonophysics 362, 6782.CrossRefGoogle Scholar
Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. 2006. Large Igneous Provinces generated from the margins of the Large Low Velocity Provinces in the deep mantle. Geophysical Journal International 167, 1447–60.CrossRefGoogle Scholar
Torsvik, T. H., Smethurst, M. A., Meert, J. G. et al. 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic: a tale of Baltica and Laurentia. Earth Science Reviews 40, 229–58.CrossRefGoogle Scholar
Torsvik, T. H., Steinberger, B., Cocks, L. R. M. & Burke, K. 2008 b. Longitude: linking Earth's ancient surface to its deep interior. Earth and Planetary Science Letters 276, 273–82.CrossRefGoogle Scholar
Torsvik, T. H., van der Voo, R. & Doubrovine, P. V. et al. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. PNAS 111, 8735– 40.CrossRefGoogle ScholarPubMed
Torsvik, T. H., van der Voo, R. & Preeden, V. et al. 2012. Phanerozoic polar wander, palaeogeography, and dynamics. Earth-Science Reviews 114, 325–68.CrossRefGoogle Scholar
Van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J. et al. 2010. Towards absolute plate motions constrained by lower mantle slab remnants. Nature Geoscience 3, 3640.CrossRefGoogle Scholar
Van der Meer, D. G., van Hinsbergen, D. J. J. & Spakman, W. 2017. The Atlas of the Underworld: a catalogue of slab remnants in the mantle imaged by seismic tomography, and their geological interpretation. Tectonophysics. https://doi.org/10.1016/j.tecto.2017.10.004Google Scholar
Van der Voo, R., van Hinsbergen, D. J. J., Domeier, M., Spakman, W. & Torsvik, T. H. 2015. Latest Jurassic-earliest Cretaceous oroclinal closure of the Mongol-Okhotsk Ocean and implications for Mesozoic Central Asian plate reconstructions. In Late Jurassic Margin of Laurasia – A Record of Faulting Accommodating Plate Rotation (eds Anderson, T. H., Didenko, A. N., Johnson, C. L., Khanchuk, A. I. & MacDonald, J. H. Jr). Geological Society of America, Special Paper 513. doi:10.1130/2015.2513(19).Google Scholar
Wegener, A. 1912. Die Entstehung der Kontinente. Petermann's Mittelungen aus Justus Perthes’ Geographischer Anstalt 58, 185–95, 253–6, 305–9.Google Scholar
Wilson, J. T. 1966. Did the Atlantic close and then re-open? Nature 211, 676–81.CrossRefGoogle Scholar
Zhang, N., Zhong, S. J., Leng, W. & Li, Z. X. 2010. A model for the evolution of the Earth's mantle structure since the Early Paleozoic. Journal of Geophysical Research: Solid Earth 115: B06401. doi:10.1029/2009JB006896.Google Scholar
Zhong, S., Zhang, N., Li, Z.-X. & Roberts, J. H. 2007. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth and Planetary Science Letters 261, 551–64.CrossRefGoogle Scholar