Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-28T16:06:29.187Z Has data issue: false hasContentIssue false

A Cretaceous laterite in the Negev Desert, southern Israel

Published online by Cambridge University Press:  01 May 2009

A. Singer
Affiliation:
Department of Soil and Water ScienceThe Hebrew University of JerusalemFaculty of Agriculture, RehovotIsrael

Summary

Kaolinite is the major mineral in the saprolite of a fossil laterite, found intercalated amid basalt flows from the Lower Cretaceous in the Negev desert. The kaolinite was produced by pseudomorphic alteration of plagioclase. Haematite is a secondary product and accumulated in a ferruginous soil horizon. In the saprolite Sr, Mn and Cu were strongly depleted, Zn and Ni were slightly depleted, whereas Co and Cr accumulated. In the ferruginous horizon, Sr, Mn, Cu and Zn were severely depleted, while Cr and Ni accumulated. The lateritic formation is evidence for the possible existence of tropical or intertropical conditions during the Lower Cretaceous in the Negev.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, L. T. & Cady, J. G. 1962. Genesis and hardening of laterite in soils. Tech. Bull. U.S. Dep. Agric. 1282. 90 pp.Google Scholar
Bentor, Y. K. 1952. Magmatic intrusions and lava sheets in the Ramon area of the Negev. Geol. Mag. 89, 129–40.CrossRefGoogle Scholar
Bentor, Y. K. 1963. The magmatic petrology of Makhtesh Ramon. Israel J. Earth Sci. 12, 85.Google Scholar
Bentor, Y. K., Bodenheimer, W. & Heller, L. 1963. A reconnaissance survey of the relationship between clay mineralogy and geological environment in the Negev (southern Israel). J. Sedim. Petrol. 33, 874903.Google Scholar
Bernas, B. 1968. A new method for decomposition and comprehensive analysis of silicates by Atomic Absorption Spectrometry. Analyt. Chem. 40, 1682–6.CrossRefGoogle Scholar
Brown, G. (Editor) 1961. The X-ray Identification and Crystal Structures of Clay Minerals. 544 pp. Mineralogical Society, London.Google Scholar
Dan, J., Moshe, R. & Alperovitch, N. 1973. The soils of Sede Zin. Israel J. Earth Sci. 22, 211–27.Google Scholar
Deer, W., Howie, R. & Zussman, I. 1964. Rock-Forming Minerals. 270 pp. Vol. 3. Sheet Minerals. Longmans, London.Google Scholar
Garfunkel, Z. & Katz, A. 1967. New magmatic features in Makhtesh Ramon, Southern Israel. Geol. Mag. 104, 608–29.CrossRefGoogle Scholar
Gordon, M. & Murata, F. J. 1952. Minor elements in Arkansas bauxite. Econ. Geol. 47, 169–79.CrossRefGoogle Scholar
Gordon, M. & Tracey, L. 1952. Origin of the Arkansas bauxite deposits. In: Problems of Clay and Laterite Genesis. Publ. Amer. Inst. Min. Metall. Eng., New York.Google Scholar
Lapparent, J. de. 1930. Lex bauxites de la France Meridionale. Mém. Carte Géol. Fr. 187 pp.Google Scholar
Maignien, R. 1966. Review of research on laterites. Nat. Res. Research Paper 4. 148 pp. UNESCO, Paris.Google Scholar
Millot, G. & Bonifas, M. 1955. Transformations isovolumétriques dans les phénomenes de latérisarion et bauxitisation. Bull. Serv. Carte Géol. d'Alsace et de Lorraine. T 8, Fasc. 1.Google Scholar
Millot, G. 1964. Géologie des Argiles. 499 pp. Masson et Cie. Paris.Google Scholar
Mohr, E. C. J. & Van Baren, F. A. 1954. Soils of Equatorial Regions. 498 pp. Interscience, London, New York.Google Scholar
Nalovic, L. & Pinta, M. 1971. Recherches sur les éléments traces dans les sols tropicaux: Etude de quelques sols du Cameron. Geoderma 7, 249–67.CrossRefGoogle Scholar
Picard, L. 1970. Geological Map. In: Atlas of Israel. Published by Survey of Israel, and Elsevier, Amsterdam.Google Scholar
Rankama, K. & Sahama, Th. G. 1960. Geochemistry, 4th ed. 912 pp. University of Chicago Press.Google Scholar
Schwartzbach, M. 1963. Climates of the Past. 328 pp. Van Nostrand, London.Google Scholar
Segalen, P. 1957. Etude des sols derivés de roches volcaniques basiques à Madagascar. Mém. Inst. scient. Madagascar D, t.8, 182 pp.CrossRefGoogle Scholar
Shaw, S. H. 1947. Southern Palestine. Geological map on a scale of 1:250,000, with explanatory notes. Jerusalem.Google Scholar
Singer, A. 1970. Edaphoids and paleosols of basaltic origin in the Galilee (Israel). J. Soil Sci. 21, 289–96.CrossRefGoogle Scholar
Singer, A. 1973. Weathering products of basalt in the Galilee and Menashe. Vesicular and saprolitic weathering. Israel J. Earth Sci. 22, 229–42.Google Scholar
Singer, A. & Navrot, J. 1973. Some aspects of the Ca and Sr weathering cycle in the Lake Kinneret (Lake Tiberias) drainage basin. Chem. Geol. 12, 209–18.CrossRefGoogle Scholar
Vahrame'ev, B. A. 1959. Geobotanical and climatological zonality in Eurasia during the Cretaceous and its comparison with the zonality in northern America. In: El sistema Cretacico, vol. 2, 20th Int. geol. Congr., Mexico, 1956.Google Scholar
Valeton, I. 1957. Lateritische Verwitterungsboden zur Zeit der Jungkimmerischen Gebirgsbildung in nordlichen Harzvorland. Geol. Jb. 73, 149–64.Google Scholar
Wolfenden, E. B. 1965. Geochemical behaviour of trace elements during bauxite formation in Sarawak, Malaysia. Geochim. cosmochim. Acta 29, 1051–62.CrossRefGoogle Scholar
Zeissink, H. E. 1971. Trace element behaviour in two nickeliferous laterite profiles. Chem. Geol. 7, 2536.CrossRefGoogle Scholar