Skip to main content Accessibility help
×
Home

Cenozoic high Sr/Y volcanic rocks in the Qiangtang terrane, northern Tibet: geochemical and isotopic evidence for the origin of delaminated lower continental melts

Published online by Cambridge University Press:  12 March 2008

SHEN LIU
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
RUI-ZHONG HU
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
CAI-XIA FENG
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
HAI-BO ZOU
Affiliation:
Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095, USA
CAI LI
Affiliation:
Department of Earth and Space Sciences, Jilin University, Changchun 130026, China
XIAO-GUO CHI
Affiliation:
Department of Earth and Space Sciences, Jilin University, Changchun 130026, China
JIAN-TANG PENG
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
HONG ZHONG
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
LIANG QI
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
YOU-QIANG QI
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
TAO WANG
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
Corresponding
E-mail address:

Abstract

Geochemical and Sr–Nd–Pb isotopic data are presented for volcanic rocks from Zougouyouchaco (30.5 Ma) and Dogai Coring (39.7 Ma) of the southern and middle Qiangtang block in northern Tibet. The volcanic rocks are high-K calc-alkaline trachyandesites and dacites, with SiO2 contents ranging from 58.5 to 67.1 wt % The rocks are enriched in light REE (LREE) and contain high Sr (649 to 986 ppm) and relatively low Yb (0.8 to 1.2 ppm) and Y (9.5 to 16.6 ppm) contents, resulting in high La/Yb (29–58) and Sr/Y (43–92) ratios, as well as relatively high MgO contents and Mg no., similar to the compositions of adakites formed by slab melting in subduction zones. However, the adakitic rocks in the Qiangtang block are characterized by relatively low εNd(t) values (−3.8 to −5.0) and highly radiogenic Sr ((87Sr/86Sr)i=0.706–0.708), which are inconsistent with an origin by slab melting. The geochemistry and tectonics indicate that the adakitic volcanic rocks were most likely derived from partial melting of delaminated lower continental crust. As the pristine adakitic melts rose, they interacted with the surrounding mantle peridotite, elevating their MgO values and Mg numbers.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

Aguillón-Robles, A., Caimus, T., Bellon, H., Maury, R. C., Cotton, J., Bourgois, J. & Michaud, F. 2001. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: indicators of East Pacific Rise subduction below southern Baja California. Geology 29, 531–4.2.0.CO;2>CrossRefGoogle Scholar
Arnaud, N. O., Vidal, P., Tapponnier, P., Matte, P. & Deng, W. M. 1992. The high K2O volcanism of northwestern Tibet: Geochemistry and tectonic implications. Earth and Planetary Science Letters 111, 351–67.CrossRefGoogle Scholar
Atherton, M. P. & Petford, N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144–6.CrossRefGoogle Scholar
Austrheim, H., Eramber, M. & Engvik, A. K. 1997. Processing of crust in the root of the Caledonian continental collision zone: the role of eclogitization. Tectonophysics 273, 121–53.CrossRefGoogle Scholar
Baker, M. B., Hischmann, M. M., Ghiorso, M. S. & Stolper, E. M. 1995. Compositions of near-solidus peridotite melt from experiments and thermodynamic calculations. Nature 375, 308–11.CrossRefGoogle Scholar
Castillo, P. R., Janney, P. E. & Solidum, R. U. 1999. Petrology and geochemistry of Camiguin island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology 134, 3351.CrossRefGoogle Scholar
Castillo, P. R., Pringle, M. S. & Carlson, R. W. 1994. East Mariana basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume? Earth and Planetary Science Letters 123, 139–54.CrossRefGoogle Scholar
Chi, X. G., Li, C., Jin, W., Liu, S. & Yang, R. H. 1999. Temporal evolution of Cenozoic volcanism in northern Tibet and the uplifting of Qinhai-Tibet Plateau. Geological Review 45, 978–85.Google Scholar
Chung, S. L., Liu, D. Y., Ji, J. Q., Chu, M. F., Lee, H. Y., Wen, D. J., Lo, C. H., Lee, T. Y., Qian, Q. & Zhang, Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology 31, 1021–4.CrossRefGoogle Scholar
Chung, S. L., Lo, C. H., Lee, T. Y., Zhang, Y. Q., Xie, Y. W., Li, X. H., Wang, K. L. & Wang, P. L. 1998. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature 394, 769–73.CrossRefGoogle Scholar
Coleman, M. & Hodges, K. 1995. Evidence for Tibetan plateau uplift before 14 Myr from a new minimum age for east-west extension. Nature 374, 4952.CrossRefGoogle Scholar
Cooper, K. M., Reid, M. R., Dunbar, N. W. & McIntosh, W. C. 2002. Melt generation beneath northwestern Tibet: Constraints from 230Th–238U disequilibria. Geochemistry, Geophysics, Geosystems 10.1029/2002 GC000 332.Google Scholar
Defant, M. J. & Drummond, M. S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–5.CrossRefGoogle Scholar
Defant, M. J., Jackson, T. E., Drummond, M. S., De Boer, J. Z., Bellon, H., Feigenson, M. D. et al. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. Journal of the Geological Society, London 149, 569–79.CrossRefGoogle Scholar
Defant, M. J. & Kepezhinskas, P. K. 2001. Evidence suggests slab melting in arc magmas. EOS, Transactions American Geophysical Union 82, 65–9.CrossRefGoogle Scholar
Defant, M. J., Kepezhinskas, P., Defant, M. J., Xu, J. F., Kepezhinskas, P., Wang, Q., Zhang, Q. & Xiao, L. 2002. Adakites: some variations on a theme. Acta Petrologica Sinica 18 (2), 129–42.Google Scholar
Deng, W. M. 1989. The Cenozoic volcanic rocks in north Ali area, Xizang. Acta Petrologica Sinica 3, 111 (in Chinese with English abstract).Google Scholar
Deng, W. M. 1991. The geology, geochemistry and forming age of the shoshonitic volcanic rock in middle Kunlun orogenic belt. Scientia Geologica Sinica 3, 201–13 (in Chinese with English abstract).Google Scholar
Deng, W. M. 1998. Cenozoic intraplate volcnic rocks in the northern Qinghai–Xizang plateau. Beijing: Geological Publishing House, 1178.Google Scholar
Ding, L., Kapp, P., Yue, Y. H. & Lai, Q. Z. 2007. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth and Planetary Science Letters 254, 2838.CrossRefGoogle Scholar
Ding, L., Kapp, P., Zhong, D. L. & Deng, W. M. 2003. Cenozoic volcanism in Tibet: Evidence from oceanic to continental subduction. Journal of Petrology 44, 1833–65.CrossRefGoogle Scholar
Ding, L., Zhang, J. J., Zhou, Y., Deng, W. M., Xu, R. H. & Zhong, D. L. 1999. Tectonic implication on the lithosphere evolution of the Tibet Plateau: petrology and geochemistry of sodic and ultrapotassic volcanism in northern Tibet. Acta Petrologica Sinica 15, 408–21.Google Scholar
Drummond, M. S., Defant, M. J. & Kepezhinskas, P. K. 1996. Petrogenesis of slab-derived trondhjemite–tonalite–daref/adakite magmas. Transactions Royal Society of Edinburgh, Earth Science 87, 205–15.CrossRefGoogle Scholar
Ducea, M. & Saleeby, J. 1998. A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. International Geology Review 40, 7893.CrossRefGoogle Scholar
Gao, S., Rudnick, R. L., Yuan, H. L., Liu, X. M., Liu, Y. S., Xu, W. L., Ling, W. L., Ayers, J., Wang, X. C. & Wang, Q. H. 2004. Recycling lower continental crust in the North China craton. Nature 432, 892–7.CrossRefGoogle ScholarPubMed
Green, T. H. 1980. Island arc and continent-building magmatism: a review of petrogenetic models based on experimental petrology and geochemistry. Tectonophysics 63, 367–85.CrossRefGoogle Scholar
Hacker, B. R., Gnos, E., Ratschbacher, L., Grove, M., McWilliams, M., Sobolev, S. V., Jiang, W. & Wu, Z. 2000. Hot and dry deep crustal xenoliths from Tibet. Science 287, 2463–6.CrossRefGoogle ScholarPubMed
Hart, S. R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–7.CrossRefGoogle Scholar
Hou, Z. Q., Gao, Y. F., Qu, M., Rui, Z. Y. & Mao, X. X. 2004. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth and Planetary Science Letters 220, 139–55.CrossRefGoogle Scholar
Jahn, B. M. & Zhang, J. Q. 1984. Archean granulite gneisses from eastern Sino-Korean Province, China: rare earth geochemistry and tectonic implication. Contributions to Mineralogy and Petrology 85, 224–43.CrossRefGoogle Scholar
Johnson, K., Barnes, C. G. & Miller, C. A. 1997. Petrology, geochemistry, and genesis of high-Al tonalite and trondhjemites of the Cornucopia stock, Blue Mountains, Northeastern Oregon. Journal of Petrology 38, 15851611.CrossRefGoogle Scholar
Kay, R. W. 1978. Aleutian magnesium andesites: melts from subducted Pacific oceanic slab. Journal of Volcanology and Geothermal Research 4, 117–32.CrossRefGoogle Scholar
Kay, R. W. & Kay, S. M. 1993. Delamination and delamination magmatism. Tectonophysics 219, 177–89.CrossRefGoogle Scholar
Kay, S. M., Ramos, V. A. & Marquez, M. 1993. Evidence in Cerro Pampa volcanic rocks of slab melting prior to ridge trench collision in southern South America. Journal of Geology 101, 703–14.CrossRefGoogle Scholar
Kepezhinskas, P. K., Defant, M. J. & Drummond, M. 1995. Na metasomatism in the island-arc mantle by slab melt–peridotite interaction: evidence from mantle interaction – evidence from mantle xenoliths in the north Kamchatka arc. Journal of Petrology 36, 1505–27.Google Scholar
Lai, S. C. & Liu, C. Y. 2001. Enriched upper mantle and eclogitic lower crust in north Qiangtang, Qinghai–Tibet Plateau: petrological and geochemical evidence from the Cenozoic volcanic rocks. Acta Petrologica Sinica 17, 459–68 (in Chinese with English abstract).Google Scholar
Lai, S. C., Qin, J. F. & Li, Y. F. 2007. Partial melting of thickened Tibetean Crust: Geochemical evidence from Cenozoic adakitic volcanic rocks. International Geology Review 49, 357–73.CrossRefGoogle Scholar
Lai, S., Qin, J., Li, Y. & Liu, X. 2006. Cenozoic volcanic rocks in the Belog Co area, Qiangtang, northern Tibet, China: petrochemical evidence for partial melting of the mantle–crust transition zone. Geological Bulletin of China 25, 64–9.Google Scholar
Li, C., Huang, X. P., Mou, S. Y. & Chi, X. G. 2006. 40Ar–39Ar dating for Kangtog formation volcanic rocks in Zougouyouchaco, Qiangtang, northern Tibet. Geological Bulletin of China 25, 226–8 (in Chinese with English abstract).Google Scholar
Liang, X. R., Wang, G. J., Li, X. H. & Liu, Y. 2003. Precise measurement of 143Nd/144 Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometer (M C-ICPMS). Geochimica 32, 91–6.Google Scholar
Liu, J. Q. 1998. Volcanoes in China. Beijing: Science Press (in Chinese).Google Scholar
Lugmair, G. W. & Harti, K. 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.CrossRefGoogle Scholar
Mahoney, J. J., Frei, R., Tejada, M. L. G., Mo, X. X. & Leat, P. T. 1998. Tracing the Indian ocean mantle domain through time: Isotopic results from old west Indian, east Tethyan and south Pacific seafloor. Journal of Petrology 39, 12851306.CrossRefGoogle Scholar
Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F. & Champion, D. 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 124.CrossRefGoogle Scholar
McKenna, L. W. & Walker, J. D. 1990. Geochemistry of crustally derived leucocratic igneous rocks from the Ulugh Muztagh area, northern Tibet, and their implications for the formation of the Tibetan Plateau. Journal of Geophysical Research 95, 21483–502.CrossRefGoogle Scholar
Miller, C. R., Schuster, U., Klotzli, W. F. & Purtscheller, F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology 40, 13991424.CrossRefGoogle Scholar
Muir, R. J., Weaver, S. D., Bradshaw, J. D., Eby, G. N. & Evans, J. A. 1995. Geochemistry of the Cretaceous Separation Point Batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. Journal of the Geological Society, London 152, 689701.CrossRefGoogle Scholar
Mungall, J. E. 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30, 915–18.2.0.CO;2>CrossRefGoogle Scholar
Owens, T. J. & Zandt, G. 1997. Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387, 3743.CrossRefGoogle Scholar
Pearce, J. A. & Houjun, M. 1993. Volcanic rocks of the 1985 Tibet geotraverse; Lhasa to Golmud. Philosophical Transactions of the Royal Society, London 327, 169201.CrossRefGoogle Scholar
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.CrossRefGoogle Scholar
Pe-Piper, G. & Piper, J. W. 1994. Miocene magnesian andesites and darefs, Evia, Greece: adakites associated with subducting slab detachment and extension. Lithos 31, 125–40.CrossRefGoogle Scholar
Petford, N. & Atherton, M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology 37, 14911521.CrossRefGoogle Scholar
Prouteau, G., Scaillet, B., Pichavant, M. & Maury, R. C. 1999. Fluid-present melting of ocean crust in subduction zones. Geology 27, 1111–14.2.3.CO;2>CrossRefGoogle Scholar
Qi, L., Hu, J. & Gregoire, D. C. 2000. Determination of trace elements in granite by inductively coupled plasma mass spectrometry. Talanta 51, 507–13.Google Scholar
Qu, X. M., Hou, Z. Q. & Li, Y. G. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos 74, 131–48.CrossRefGoogle Scholar
Rapp, R. P., Shimizu, N. & Norman, M. D. 2003. Growth of early continental crust by partial melting of eclogite. Nature 425, 605–9.CrossRefGoogle ScholarPubMed
Rapp, R. P., Shimizu, N., Norman, M. D. & Applegate, G. S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335–56.CrossRefGoogle Scholar
Rapp, R. P. & Watson, E. B. 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. Journal of Petrology 36, 891931.CrossRefGoogle Scholar
Rapp, R. P., Watson, E. B. & Miller, C. F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research 51, 125.CrossRefGoogle Scholar
Rapp, R. P., Xiao, L. & Shimizu, N. 2002. Experimental constraints on the origin of potassium-rich adakite in east China. Acta Petrologica Sinica 18, 293311.Google Scholar
Sajona, F. G., Naury, R. C., Pubellire, M., Leterrier, J., Bellon, H. & Cotton, J. 2000. Magmatic source enrichment by slab-derived melts in young post-collision setting, central Mindanao (Philippines). Lithos 54, 173206.CrossRefGoogle Scholar
Sen, C. & Dunn, T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contributions to Mineralogy and Petrology 117, 394409.CrossRefGoogle Scholar
Shimoda, G., Tatsumi, Y., Nohda, S., Ishizaka, K. & Jahn, B. M. 1998. Setouchi high-Mg andesites revisited: Geochemical evidence for melting of subducting sediments. Earth and Planetary Science Letters 160, 479–92.CrossRefGoogle Scholar
Skjerlie, K. P. & Patino Douce, A. E. 2002. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa: implications for melting in thickened continental crust and for subduction-zone processes. Journal of Petrology 43, 291314.CrossRefGoogle Scholar
Smithies, R. H. 2000. The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters 182, 115–25.CrossRefGoogle Scholar
Sobolev, S. V. & Babeyko, A. Y. 2005. What drives orogeny in the Andes? Geology 33, 617–20.CrossRefGoogle Scholar
Sorensen, S. S. & Grossman, J. N. 1989. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina schist, southern California. Geochimica et Cosmochimica Acta 53, 3155–77.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology; convention on the use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Stern, C. R. & Kilian, R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral volcanic zone. Contributions to Mineralogy and Petrology 123, 263–81.CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tan, F. W., Pan, G. T. & Xu, Q. 2000. The uplift of Qinghai–Xizang Plateau and geochemical characteristics of Cenozoic volcanic rocks from the center of Qiangtang, Xizang. Acta Petrologica et Mineralogica 19, 121–30 (in Chinese with English abstract).Google Scholar
Tapponnier, P., Xu, Z. Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G. & Yanh, J. S. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science 294, 1671–77.CrossRefGoogle ScholarPubMed
Tatsumi, Y. 1986. Chemical characteristics of fluid phase released from a subduction lithosphere and origin of arc magma: evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research 29, 293309.CrossRefGoogle Scholar
Taylor, P. N., Jones, N. W. & Moorbath, S. 1984. Isotopic assessment of relative contributions from crust and mantle sources to the magma genesis of Precambrian granitoid rocks. Philosophical Transactions of the Royal Society of London 310, 605–25.CrossRefGoogle Scholar
Tilmann, F., Ni, J. & INDEPTH III Seismic Team. 2003. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet. Science 300, 1424–7.CrossRefGoogle ScholarPubMed
Turner, S. P., Arnaud, N., Liu, J., Rodgers, N., Hawkesworth, C., Harris, N., Kelley, S., van Calsteren, P. & Deng, W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology 37, 4571.CrossRefGoogle Scholar
Wang, Q., McDermott, F., Xu, J. F., Bellon, H. & Zhu, Y. T. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower crustal melting in an intra-continental setting. Geology 33, 465–8.CrossRefGoogle Scholar
Wang, Q., Xu, J. F., Jian, P., Bao, Z. W., Zhao, Z. H., Li, C. F., Xiong, X. L. & Ma, J. L. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology 47, 119–47.CrossRefGoogle Scholar
Wang, Q., Xu, J. F., Zhao, Z. H., Bao, Z. W., Xu, W. & Xiong, X. L. 2004 a. Cretaceous high-potassium intrusive rocks in the Yueshan–Hongzhen area of east China: adakites in an extensional tectonic regime within a continent. Geochemical Journal 38, 417–34.CrossRefGoogle Scholar
Wang, Q., Zhao, Z. H., Bao, Z W., Xu, J. F., Liu, W., Li, C. F. et al. 2004 b. Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocks and the associated porphyry copper–molybdenum mineralization in southeast Hubei, east China. Resource Geology 54, 137–52.CrossRefGoogle Scholar
Williams, H. M., Turner, S. P., Kelley, S. & Harris, N. 2001. Age and composition of dikes in Southern Tibet: new constraints on the timing of east–west extension and its relationship to postcollisional volcanism. Geology 29, 339–42.2.0.CO;2>CrossRefGoogle Scholar
Williams, H. M., Turner, S. P., Pearce, J. A., Kelley, S. P. & Harris, N. B. W. 2004. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modeling. Journal of Petrology 45, 555607.CrossRefGoogle Scholar
Wu, G. J., Xiao, X. C. & Li, T. D. 1989. The Yadong-Golmud geoscience section on the Qinghai-Tibet Plateau. Acta Geologica Sinica 4, 285–96 (in Chinese with English abstract).Google Scholar
Xiong, X. L., Adam, J. & Green, T. H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chemical Geology 218, 339–59.CrossRefGoogle Scholar
Xiong, X. L., Li, X. H., Xu, J. F., Li, W. X., Zhao, Z. H. & Wang, Q. 2003. Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate: the Late Cretaceous Zhantang andesites in the Huichang Basin, SE China. Geochemical Journal 37, 233–52.CrossRefGoogle Scholar
Xu, J. F., Shinjio, R., Defant, M. J., Wang, Q. & Rapp, R. P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 32, 1111–14.2.0.CO;2>CrossRefGoogle Scholar
Yin, A. & Harrison, T. M. 2000. Geologic evolution of the Himalayan–Tibetan orogen. Annual Review of Earth and Planetary Sciences 28, 211–80.CrossRefGoogle Scholar
Yin, H. S., Lin, J. H, Li, B. H., Zhao, B., Shi, Z. Q., Huang, J. J, Sun, C. M., Lai, S. C., Zhu, Y. T. & Zhao, X. X. 2004. High-K calc-alkaline volcanic rocks and crust–mantle interaction in Qinghai–Xizang plateau. Beijing: Geological Publishing House, 195 (in Chinese).Google Scholar
Zindler, A. & Hart, S. R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 12
Total number of PDF views: 66 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-v228l Total loading time: 0.31 Render date: 2021-01-26T22:43:02.940Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cenozoic high Sr/Y volcanic rocks in the Qiangtang terrane, northern Tibet: geochemical and isotopic evidence for the origin of delaminated lower continental melts
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Cenozoic high Sr/Y volcanic rocks in the Qiangtang terrane, northern Tibet: geochemical and isotopic evidence for the origin of delaminated lower continental melts
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Cenozoic high Sr/Y volcanic rocks in the Qiangtang terrane, northern Tibet: geochemical and isotopic evidence for the origin of delaminated lower continental melts
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *