Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T03:23:16.972Z Has data issue: false hasContentIssue false

Regulation of fitness in yeast overexpressing glycolytic enzymes: responses to heat shock and nitrogen starvation

Published online by Cambridge University Press:  14 April 2009

R. F. Rosenzweig
Affiliation:
Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Current models based on the analysis of linear metabolic pathways at steady-state predict that large increases over wild type in the activity of one enzyme will not alter an organism's fitness. This prediction is tested at steps in a highly branched pathway under two conditions known to alter steady-state: heat shock and nitrogen starvation. Saccharomyces cerevisiae transformants overproducing 1 of 4 enzymes in glycolysis (hexokinase B, phosphoglucose isomerase, phosphofructokinase, or pyruvate kinase) were subjected to heat shock in both exponential and stationary phases of growth. In neither phase does enzyme overexpression alter heat shock sensitivity. When starved for nitrogen in acetate medium, transformants overproducing hexokinase, phosphoglucose isomerase, and phosphofructokinase sporulate at the same rate and with the same frequency as cells harbouring only the plasmid vector. Current models therefore correctly predict the relationship between activity and components of fitness for 3 of 4 enzymes. By contrast, cells overexpressing pyruvate kinase sporulate poorly. This defect is not observed among cells transformed with a plasmid containing a Tn5 disrupted copy of the PYK gene. These findings are consistent with reports that implicate the PYK locus in yeast cell cycle control and suggest that it may be challenging to model relations between fitness and activity for multifunctional proteins.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Aguilera, A. & Zimmerman, F. K. (1986). Isolation and molecular analysis of the phosphoglucose isomerase gene of S. cerevisae. Molecular and General Genetics 202, 8389.CrossRefGoogle Scholar
Banuelos, M.Gancedo, C. & Gancedo, J. M. (1977). Activation by phosphate of yeast phosphofructokinase. Journal of Biological Chemistry 252, 63946398.CrossRefGoogle ScholarPubMed
Bond, U. & Schlesinger, M. J. (1987). Heat shock proteins and development. Advances in Genetics 24, 129.CrossRefGoogle ScholarPubMed
Breitenbach-Schmitt, I.Heinsch, J.Schmitt, H. D. & Zimmermann, F. K. (1984). Yeast mutants without phosphofructokinase activity can still perform glycolysis and alcoholic fermentation. Molecular and General Genetics 195, 530535.CrossRefGoogle Scholar
Burke, R. L.Tekamp-Olson, P. & Najarian, R. (1983). The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. Journal of Biological Chemistry 258, 21932201.CrossRefGoogle ScholarPubMed
Burton, R. S. & Feldman, M. (1983). Physiological effects of an allozyme polymorphism: glutamate-pyruvate transaminase and response to hyperosmotic stress in the copepod Tigriopus californicus. Biochemical Genetics 21, 239251.CrossRefGoogle ScholarPubMed
Ceraki, A. (1986). Aging of proteins and nucleic acids: what is the role of glucose? Trends in Biochemical Science 11, 311314.Google Scholar
Clewell, D. & Hilinski, D. (1970). Properties of a supercoiled deoxyribonucleic acid-protein relaxation complex and strand specificity of the relaxation event. Biochemistry 9, 44284440.Google ScholarPubMed
Clifton, D.Weinstock, S. B. & Fraenkel, D. G. (1977). Glycolysis mutants in Saccharomyces cerevisiae. Genetics 88, 111.CrossRefGoogle Scholar
Coleman, K. G.Steensma, H. Y.Kaback, D. B. & Pringle, J. R. (1986). Molecular cloning of chromosome I DNA from Saccharomyces cerevisae: isolation and characterization of the CDC24 gene and adjacent regions of the chromosome. Molecular and Cellular Biology 6, 45164525.Google ScholarPubMed
Cross, F. (1988). DAF1, a mutant gene affecting size control, pheromone response, and cell-cycle kinetics in Saccharomyces cerevisiae. Molecular and Cellular Biology 8, 4675–684.Google Scholar
Crowe, J. H.Crowe, L. M. & Chapman, D. (1984). Preservation of membranes in anhydrophobic organisms: the role of trehalose. Science 223, 701703.CrossRefGoogle ScholarPubMed
Dean, A. M. (1989). Selection and neutrality in lactose operons of Escherichia coli. Genetics 123, 441454.CrossRefGoogle ScholarPubMed
Dean, A. M.Dykhuizen, D. E. & Hartl, D. L. (1986). Fitness as a function of β-galactosidase activity in Escherichia coli. Genetical Research 48, 18.CrossRefGoogle ScholarPubMed
Dickenson, J. R. & Williams, A. S. (1986). A genetic and biochemical analysis of the role of gluconeogenesis in sporulation of Saccharomyces cerevisiae. Journal of General Microbiology 132, 26052610.Google Scholar
Dickenson, J. R. (1988). The metabolism of sporulation in yeast. Microbiological Science 5, 121123.Google Scholar
DiMichele, L. & Powers, D. A. (1982). LDH-B genotypespecific hatching times of Fundulus heteroclitus embryos. Nature 296, 563564.CrossRefGoogle ScholarPubMed
DiMichele, L.Paynter, K. T. & Powers, D. A. (1991). Evidence of lactate dehydrogenaseB allozyme effects in the Teleost, Fundulus heteroclitus. Science 253, 898900.CrossRefGoogle ScholarPubMed
Dykhuizen, D. E.Dean, A. M. & Hartl, D. L. (1987). Metabolic flux and fitness. Genetics 115, 2531.CrossRefGoogle ScholarPubMed
Entain, K.-D. (1988). Glucose repression: a complex regulatory pathway in yeast. Microbiological Science 3, 366371.Google Scholar
Entian, K.-D. & Zimmermann, F. K. (1980). Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae. Molecular and General Genetics 111, 345350.CrossRefGoogle Scholar
Entian, K.-D. & Frohlich, K.-U. (1984). Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. Journal of Bacteriology 158, 2935.CrossRefGoogle ScholarPubMed
Entian, K.-D.Kopetzki, E.Frohlich, K.-U. & Mecke, D. (1984). Cloning of hexokinase PI from Saccharomyces cerevisiae: PI transformants confirm the unique role of hexokinase isozyme PII for glucose repression in yeasts. Molecular and General Genetics 198, 5054.CrossRefGoogle ScholarPubMed
Entian, K.-D. (1988). Glucose repression: a complex regulatory pathways in yeast. Microbiological Science 3, 366371.Google Scholar
Esposito, R. E. & Klapholz, S. (1982). Meiosis and ascospore development. In The Molecular Biology of the Yeast Saccharomyces cerevisiae (ed. Strathern, J., Young, D. and Broach, J.). Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Farkas, I.Hardy, T. A.Goeg, M. G. & Roach, P. J. (1991). Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. Journal of Biological Chemistry 266, 1560215607.CrossRefGoogle ScholarPubMed
Fraenkel, D. G. (1982). Carbohydrate metabolism in yeast. In The Molecular Biology of the Yeast, Saccharomyces cerevisiae (ed. Strathern, J.Young, D. and Broach, J.). Cold Spring Harbor, New York, Cold Spring Harbor Laboratory.Google Scholar
Fraenkel, D. G. (1986). Mutants in glucose metabolism. Annual Review of Biochemistry 55, 317337.CrossRefGoogle ScholarPubMed
François, J.Eraso, P. & Gancedo, C. (1987). Changes in the concentrations of cAMP, fructose 2, 6-bisphosphate, and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. European Journal of Biochemistry 164, 369373.CrossRefGoogle ScholarPubMed
Freese, E. B.Chu, M. I. & Freese, E. (1982). Initiation of yeast sporulation by partial carbon, nitrogen, or phosphate deprivation. Journal of Bacteriology 149, 840851.CrossRefGoogle ScholarPubMed
Gancedo, J. M. & Gancedo, C. (1986). Catabolite repression mutants of yeast. FEMS Microbiological Reviews 32, 179187.Google Scholar
Green, J. B. A.Wright, A. P. H.Cheung, W. Y.Lancashire, W. E. & Hartley, B. S. (1988). The structure and regulation of phosphoglucose isomerase in Saccharomyces cerevisiae. Molecular and General Genetics 215, 100106.CrossRefGoogle ScholarPubMed
Hall, B. G. (1983). Yeast thermotolerance does not require protein synthesis. Journal of Bacteriology 156, 13631365.CrossRefGoogle Scholar
Hames, B. D. (1981). An introduction to polyacrylamide gel electrophoresis. In Gel Electrophoresis of Proteins: A Practical Approach (ed. Hames, B. D. and Rickwood, D.), Oxford: IRL Press.Google Scholar
Hartl, D. L. & Dykhuizen, D. E. (1985). The neutral theory and the molecular basis of preadaptation. In Population Genetics and Molecular Evolution (ed. Ohta, T. and Aoki, K.), pp. 107124. Tokyo: Japan Scientific Societies Press.Google Scholar
Hartl, D. L.Dykhuizen, D. E. & Dean, A. M. (1985). Limits to adaptation: the evolution of selective neutrality. Genetics 111, 655674.CrossRefGoogle ScholarPubMed
Hartwell, L. H. (1973). Three additional genes required for DNA synthesis in Saccharomyces cerevisiae. Journal of Bacteriology 115, 966974.CrossRefGoogle ScholarPubMed
Heinisch, J. (1986). Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Molecular and General Genetics 202, 7582.CrossRefGoogle ScholarPubMed
Henle, K. J.Nagle, W. A.Moss, A. J. & Herman, L. S. (1982). Polyhydroxy compounds and thermotolerance: a proposed concatenation. Radiation Research 92, 445451.CrossRefGoogle ScholarPubMed
Herrero, P.Fernandez, R. & Moreno, F. (1989). The hexokinase PII isozyme of Saccharomyces cerevisiae is a protein kinase. Journal of General Microbiology 135, 12091216.Google ScholarPubMed
Holmes, D. S. & Quigley, M. (1981). A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 114, 193197.CrossRefGoogle ScholarPubMed
Hottiger, T.Boiler, T. & Wiemken, A. (1987). Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Letters 220, 113115.CrossRefGoogle ScholarPubMed
Hunsly, J. R. & Suelter, C. H. (1969). Yeast pyruvate kinase. II. Kinetic properties. Journal of Biological Chemistry 244, 48194822.CrossRefGoogle Scholar
Iada, H. & Yahara, I. (1985). Yeast heat shock protein of Mr 48,000 is an isoprotein of enolase. Nature 315, 688690.CrossRefGoogle Scholar
Ito, H.Fukudu, Y.Murata, K. & Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. Journal of Bacteriology 153, 163168.CrossRefGoogle ScholarPubMed
Kacser, H. & Burns, J. A. (1973). The control of flux. Symposia of the Society of Experimental Biology 27, 65104.Google ScholarPubMed
Kacser, H. & Burns, J. A. (1979). Molecular democracy: who shares the controls? Biochemical Society Transactions 7, 11491160.CrossRefGoogle ScholarPubMed
Kacser, H. & Burns, J. A. (1981). The molecular basis of dominance. Genetics 97, 639666.CrossRefGoogle ScholarPubMed
Kane, S. M. & Roth, R. (1974). Carbohydrate metabolism during ascospore development in yeast. Journal of Bacteriology 118, 814.CrossRefGoogle ScholarPubMed
Kawasaki, G. & Fraenkel, D. G. (1982). Cloning of yeast glycolysis genes by complementation. Biochemical and Biophysical Research Communications 108, 1107–1112.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Lillie, S. & Pringle, J. R. (1980). Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. Journal of Bacteriology 143, 13841394.CrossRefGoogle ScholarPubMed
Maitra, P. K. & Lobo, Z. (1971). A kinetic study of glycolytic enzyme synthesis in yeast. Journal of Biological Chemistry 246, 475488.CrossRefGoogle ScholarPubMed
Maniatis, T.Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
McAllister, L. & Finkelstein, D. B. (1980). Heat shock proteins and thermal resistance in yeast. Biochemical and Biophysical Research Communications 143, 603619.Google Scholar
Michels, C. & Romanowski, A. (1980). Pleiotropic glucose repression-resistant mutation in Saccharomyces carlsbergensis. Journal of Bacteriology 143, 674679.CrossRefGoogle Scholar
Michels, C. A.Hahnenberger, K. M. & Sylvestre, Y. (1983). Pleiotropic mutations regulating resistance to glucose repression in Saccharomyces carlsbergensis are allelic to the structural gene for hexokinase B. Journal of Bacteriology 153, 574578.CrossRefGoogle Scholar
Middleton, R. J. & Kacser, H. (1983). Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics 105, 633650.CrossRefGoogle ScholarPubMed
Nash, R.Tokiwa, G.Anand, S.Erickson, K. & Futcher, A. B. (1988). The WHI1 + gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO Journal 7, 43354346.CrossRefGoogle ScholarPubMed
Olempska-Beer, Z. & Frees, E. (1987). Initiation of meiosis and sporulation in Saccharomyces cerevisiae does not require a decrease in cyclic AMP. Molecular and Cellular Biology 7, 21412147.Google Scholar
Parry, J. M.Davies, P. J. & Evans, W. E. (1976). The effects of ‘cell age’ upon the lethal effects of physical and chemical mutagens in the yeast, Saccharomyces cerevisiae. Molecular and General Genetics 146, 2735.CrossRefGoogle ScholarPubMed
Pelham, H. R. B. (1986). Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46,959961.CrossRefGoogle ScholarPubMed
Piper, P. W.Curran, B.Davies, M. W.Lockheart, A. & Reid, G. (1986). Transcription of the phosphoglycerate kinase gene of Saccharomyces cerevisiae increases when fermentative cultures are stressed by heat shock. European Journal of Biochemistry 161, 525531.CrossRefGoogle ScholarPubMed
Place, A. R. & Powers, D. A. (1979). Genetic variation and relative efficiencies: Lactate dehydrogenase B allozymes of Fundulus heteroclitus. Proceedings of the National Academy of Sciences (USA) 76, 23542358.CrossRefGoogle ScholarPubMed
Plesset, J.Palm, C. & McLaughlin, C. S. (1982). Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 108, 13401345.CrossRefGoogle ScholarPubMed
Pollock, G. E. & Holmstrom, C. D. (1951). The trehalose content and the quality of active dry yeast. Cereal Chemistry 28, 498505.Google Scholar
Powers, D. A.DiMichele, L. & Place, A. R. (1983). The use of enzyme kinetics to predict differences in cellular metabolism, Cellularity rate, and swimming performance between LDH-B genotypes of the fish, Fundulus heteroclitus. Isozymes: Current Topics Biological and Medical Research 10, 147170.Google Scholar
Pringle, J. R. & Hartwell, L. H. (1981). The Saccharomyces cerevisiae cell cycle. In The Molecular Biology of the Yeast, Saccharomyces cerevisiae: Life Cycle and Inheritance. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Rosenzweig, R. F. (1991). Physiological and Fitness Phenotypes of Yeast Overexpressing Glycolytic Enzymes. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA.Google Scholar
Rosenzweig, R. F. (1992). Regulation of fitness in yeast overexpressing glycolytic enzymes: parameters of growth and viability. Genetical Research (in the press).Google ScholarPubMed
Sherman, F.Fink, G. R. & Hicks, J. B. (1986). Methods in Yeast Genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Sinha, P. & Maitra, P. K. (1977). Mutants of Saccharomyces cerevisiae having structurally altered pyruvate kinase. Molecular and General Genetics 158, 171177.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F. J. (1981). Biometry. San Francisco: W. H. Freeman.Google Scholar
Sprague, G. F. (1977). Isolation and characterization of a Saccharomyces cerevisiae mutant deficient in pyruvate kinase activity. Journal of Bacteriology 130, 232241.CrossRefGoogle ScholarPubMed
Van Delden, W. (1982). The alcohol dehydrogenase polymorphism in Drosophila melanogaster. Selection at an enzyme locus. Evolutionary Biology 15, 187222.CrossRefGoogle Scholar
Van Delden, W.Boerma, A. C. & Kamping, A. (1978). The alcohol dehydrogenase polymorphism in populations of Drosophila melanogaster. I Selection in different environments. Genetics 90, 161191.CrossRefGoogle ScholarPubMed
Walsh, R. B.Kawasaki, G. & Fraenkel, D. G. (1983). Cloning of genes that complement yeast hexokinase and glucokinase mutants. Journal of Bacteriology 154, 10021004.CrossRefGoogle ScholarPubMed
Yamamoto, M.Jones, J. M.Senghas, E.Gawron-Burke, C. & Clewell, D. B. (1987). Generation of Tn5 insertions in streptococcal conjugative plasmids. Applied and Environmental Microbiology 57, 10691072.CrossRefGoogle Scholar
Zubenko, G. S. & Jones, E. W. (1981). Protein degradation, meiosis and sporulation in proteinase-deficient mutants of Saccharomyces cerevisiae. Genetics 97, 45.CrossRefGoogle ScholarPubMed