Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-22T13:23:11.207Z Has data issue: false hasContentIssue false

Reduction of wild-type X chromosomes with the Ybb− chromosome of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Gioacchino Palumbo
Affiliation:
Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
Sharyn A. Endow*
Affiliation:
Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
R. Scott Hawley
Affiliation:
Departments of Genetics and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461
*
To whom correspondence should be addressed.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Ybb− chromosome has been previously shown to induce reduction of X chromosome ribosomal genes in Xbb / Ybb− or Xbb+ / Ybb− flies. These reduction events are presumed to arise as one of the two products of unequal sister chromatid exchanges, which result in both magnified and reduced products. Bobbed reduced chromosomes may also arise as products of other recombinative events such as intrachromatid deletions. In this report we use the Ybb− chromosome to reduce the number of ribosomal genes present on X chromosomes from two wild-type stocks under ‘non-magnifying’ conditions. We then show that the bobbed reduced X chromosomes show no detectable difference in their Southern blot rDNA patterns when compared with the parental wild-type X chromosome. This indicates that reduction events do not preferentially delete certain repeat classes, and supports previous observations that the repeat types present in the D. melanogaster X chromosome nucleolus organizer are not significantly clustered.

Type
Short Paper
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

Bridges, C. B. & Brehme, K. S. (1944). The Mutants of Drosophila melanogaster. Carnegie Institute of Washington Publication 552.Google Scholar
Dawid, I. B., Wellauer, P. K. & Long, E. O. (1978). Ribosomal DNA in Drosophila melanogaster. I. Isolation and characterization of cloned fragments. Journal of Molecular Biology 126, 749768.CrossRefGoogle ScholarPubMed
Endow, S. A. (1980). On ribosomal gene compensation in Drosophila. Cell 22, 149155.CrossRefGoogle ScholarPubMed
Endow, S. A. (1982 a). Molecular characterization of ribosomal genes on the Ybb- chromosome of Drosophila melanogaster. Genetics 102, 9199.CrossRefGoogle ScholarPubMed
Endow, S. A. (1982 b). Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. Genetics 100, 375385.CrossRefGoogle ScholarPubMed
Endow, S. A. (1983). Nucleolar dominance in polytene cells of Drosophila. Proceedings of the National Academy of Sciences of the USA 80, 44274431.CrossRefGoogle ScholarPubMed
Endow, S. A. & Glover, D. M. (1979). Differential replication of ribosomal gene repeats in polytene nuclei of Drosophila. Cell 17, 597605.CrossRefGoogle ScholarPubMed
Hawley, R. S. & Tartof, K. D. (1983). The ribosomal DNA of Drosophila melanogaster is organized differently from that of Drosophila hydei. Journal of Molecular Biology 163, 499503.CrossRefGoogle ScholarPubMed
Kafatos, F. C., Jones, C. W. & Efstratiadis, A. (1979). Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Research 7, 15411552.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster. Carnegie Institution of Washington Publication no. 627.Google Scholar
Locker, D. & Prud'homme, N. (1973). Etude de plusieurs facteurs faisant varier la fréquence de reversion au locus bobbed chez Drosophila melanogaster. Molecular and General Genetics 124, 1119.CrossRefGoogle ScholarPubMed
Pellegrini, M., Manning, J. & Davidson, N. (1977). Sequence arrangement of the rDNA of Drosophila melanogaster. Cell 10, 213224.CrossRefGoogle ScholarPubMed
Ritossa, F. M. (1968). Unstable redundancy of genes for ribosomal RNA. Proceedings of the National Academy of Sciences of the USA 60, 509516.CrossRefGoogle ScholarPubMed
Ritossa, F., Malva, C., Boncinelli, E., Graziani, F. & Polito, L. (1971). The first steps of magnification of DNA complementary to ribosomal RNA in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 68, 15801584.CrossRefGoogle Scholar
Tartof, K. D. (1973). Regulation of ribosomal RNA gene multiplicity in Drosophila melanogaster. Genetics 73, 5171.CrossRefGoogle ScholarPubMed
Tartof, K. D. (1974). Unequal mitotic sister chromatid exchange as the mechanism of ribosomal RNA gene magnification. Proceedings of the National Academy of Sciences of the USA 71, 12721276.CrossRefGoogle ScholarPubMed
Tartof, K. D. & Dawid, I. B. (1976). Similarities and differences in the structure of X and Y chromosome rRNA genes of Drosophila. Nature 263, 2730.CrossRefGoogle ScholarPubMed
Wellauer, P. K. & Dawid, I. B. (1977). The structural organization of ribosomal DNA in Drosophila melanogaster. Cell 10, 193212.CrossRefGoogle ScholarPubMed