Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T00:44:39.164Z Has data issue: false hasContentIssue false

Reduced variation at concertina, a heterochromatic locus in Drosophila

Published online by Cambridge University Press:  14 April 2009

Marta L. Wayne
Affiliation:
Department of Ecology and Evolution, 1101 E. 57th Street, University of Chicago, Chicago, IL 60637, USA
Martin Kreitman
Affiliation:
Department of Ecology and Evolution, 1101 E. 57th Street, University of Chicago, Chicago, IL 60637, USA
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Drosophila melanogaster and closely related species, polymorphism has been shown to be reduced at loci located in regions of low recombination on the X chromosome and on the fourth chromosome, which does not normally recombine. Thispositive correlation between nucleotide polymorphism level and recombination rate is not predicted by standard neutral theory and therefore must result from natural selection and genetic hitchhiking along the chromosomes. We report here the near-complete absence of variation at concertina (cta), a locus located in the β-heterochromatic base ofchromosome 2L, a region of strongly reduced recombination. A 1.2 kilobase region containing coding regions and introns was sequenced from each of nine lines of D. melanogaster and nine lines of D. simulans representingworldwide collections. Variation is significantly reduced in cta in both species compared with other available loci on the same chromosome. Two analyses of background selection demonstrate that the reduction in variation at cta, considered in combination with other loci on chromosome 2L or alone, is consistent with the background selection model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Aguadé, M., Miyashita, N., & Langley, C. H., (1989). Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics 122, 607615.CrossRefGoogle ScholarPubMed
Aguadé, M., Miyashita, N., & Langley, C. H., (1992). Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics 132, 755770.CrossRefGoogle ScholarPubMed
Aquadro, C. F., Begun, D. J., & Kindahl, E. C., (1994). Selection, recombination, and DNA polymorphism in Drosophila. In Alternatives to the Neutral Model (ed. B., Golding), pp. 4656. London: Chapman and Hall.Google Scholar
Aquadro, C. F., Jennings, R. M. Jr, Bland, M. M., Laurie, C. C., & Langley, C. H., (1992). Patterns of naturally occurring restriction map variation, dopa decarboxylase activity variation and linkage disequilibrium in the Ddc gene region of Drosophila melanogaster. Genetics 132, 443452.CrossRefGoogle ScholarPubMed
Begun, D. J. & Aquadro, C. F. (1991). Molecular population genetics of the distal portion of the X chromosome in Drosophila. evidence for genetic hitchhiking of the yellow-achaete region. Genetics 129, 11471158.CrossRefGoogle ScholarPubMed
Begun, D. J., & Aquadro, C. F., (1992). Levels of naturally occurring DNA polymorphism correlate with recombination rates in Drosophila melanogaster. Nature 356, 519520.CrossRefGoogle Scholar
Berry, A. J., Ajioka, J. W., & Kreitman, M., (1991). Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics 129, 11111117.CrossRefGoogle ScholarPubMed
Braverman, J. R., Hudson, R. R., Kaplan, N. L., Langley, C. H., & Stephan, W., (1995). The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics 141, 783796.CrossRefGoogle Scholar
Charlesworth, B., (1994). The effect of background selection against deleterious mutations on weakly selected, linked variants. Genetical Research 63, 213227.CrossRefGoogle ScholarPubMed
Charlesworth, B., (1996). Background selection and patterns of genetic diversity in Drosophila. Genetical Research, in press.CrossRefGoogle ScholarPubMed
Charlesworth, B., Morgan, M. T., & Charlesworth, D., (1993). The effect of deleterious mutations on neutral molecular variation. Genetics 134, 12891303.CrossRefGoogle ScholarPubMed
Dru, P., Bras, F., Dezélée, S., et al. (1993). Unusual variability of the Drosophila melanogaster ref(2)p protein which controls the multiplication of sigma rhabdovirus. Genetics 133, 943954.CrossRefGoogle ScholarPubMed
Grantham, R., (1974). Amino acid difference formula to help explain protein evolution. Science 185, 862864.CrossRefGoogle ScholarPubMed
Hey, J., & Kliman, R. M., (1993). Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Molecular Biology and Evolution 10, 804822.Google ScholarPubMed
Hudson, R., (1992). Gene genealogies and the coalescent process. In Oxford Series in Ecology and Evolution (ed. May, R. M. & Harvey, P. H.), pp. 144. Oxford: Oxford University Press.Google Scholar
Hudson, R. R., & Kaplan, N. L., (1994). Gene trees with background selection. In Alternatives to the Neutral Model (ed. B., Golding), pp. 140153. London: Chapman and Hall.Google Scholar
Hudson, R. R., & Kaplan, N. L., (1995). Deleterious background selection with recombination. Genetics 141, 16051617.CrossRefGoogle ScholarPubMed
Hudson, R. R., Kreitman, M., & Aguadé, M. (1987). A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153159.CrossRefGoogle ScholarPubMed
Kaplan, N. L., Hudson, R. R., & Langley, C. H., (1989). The ‘hitchhiking effect’ revisited. Genetics 123, 887899.CrossRefGoogle ScholarPubMed
Kliman, R., & Hey, J., (1993). Reduced natural selection associated with low recombination in Drosophila melanogaster. Molecular Biology and Evolution 10, 12391258.Google ScholarPubMed
Kreitman, M., (1983). Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304, 412417.CrossRefGoogle ScholarPubMed
Kreitman, M., & Hudson, R. R., (1991). Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics 127, 565582.CrossRefGoogle ScholarPubMed
Kreitman, M., & Wayne, M. L., (1994). Organization of genetic variation at the molecular level: lessons from Drosophila. In Molecular Approaches to Ecology and Evolution (ed. Schierwater, B., Streit, B., Wagner, G. P. & DeSalle, R.), pp. 157184. Basel: Birkhauser-Verlag.CrossRefGoogle Scholar
Martí-Campos, J. M., Comerón, J. M., Miyashita, N., & Aguadé, M. (1992). Intraspecific and interspecific variation at the y-ac-sc region of Drosophila simulans and Drosophila melanogaster. Genetics 130, 805816.CrossRefGoogle Scholar
Smith, J. Maynard, & Haigh, J., (1974). The hitchhiking effect of a favorable gene. Genetical Research 23, 2325.CrossRefGoogle Scholar
Miyashita, N., & Langley, C. H., (1988). Molecular and phenotypic variation of the white locus region in Drosophila melanogaster. Genetics 120, 199212.CrossRefGoogle ScholarPubMed
Nei, M., & Gojobori, T., (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3, 418426.Google ScholarPubMed
Nordborg, M., Charlesworth, B., & Charlesworth, D., (1996). The effect of recombination on background selection. Genetical Research 67, 159174.CrossRefGoogle ScholarPubMed
Palopoli, M., & Wu, C.-l. (1996). Rapid evolution of a coadapted gene complex: evidence from the Segregation Distorter (SD) system of meiotic drive in Drosophila melanogaster. Genetics 143, 16751688.CrossRefGoogle ScholarPubMed
Parks, S., & Wieschaus, E., (1991). The Drosophila gastrulation gene concertina encodes a G-alpha-like protein. Cell 64, 447458.CrossRefGoogle ScholarPubMed
Simon, M. W., Strathmann, M. P., & Guatam, N., (1991). Diversity of G proteins in signal transduction. Science 252, 802808.CrossRefGoogle ScholarPubMed
Stephan, W., & Langley, C. H., (1989). Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics 121, 8999.CrossRefGoogle ScholarPubMed
Stephan, W., & Mitchell, S. H., (1992). Reduced levels of DNA polymorphism and fixed between-population differences in the centromeric region of Drosophila ananassae. Genetics 132, 10391045.CrossRefGoogle ScholarPubMed
Stephan, W., Wiehe, T. H. E., & Lenz, M. W., (1992). The effect of strongly selected substitutions on neutral polymorphism: analytical results based on diffusion theory. Theoretical Population Biology 41, 237254.CrossRefGoogle Scholar
Takano, T. S., Kusakabe, S., & Mukai, T., (1993). DNA polymorphism and the origin of protein polymorphism at the Gpdh locus of Drosophila melanogaster. In Mechanisms of Molecular Evolution: Introduction to Molecular Paleopopulation Biology (ed. Takahata, N. & Clark, A. G.), pp. 179190. Sunderland, MA: Sinauer.Google Scholar
Walsh, S. P., Metzger, D. A., & Higuchi, R., (1991). Chelex 100 as a medium for simple extraction of DNA for PCR based typing from forensic material. Bio Techniques 10, 506513.Google ScholarPubMed
Wayne, M. L., Contamine, D., & Kreitman, M., (1996). Molecular population genetics of ref(2)P, a locus which confers viral resistance in Drosophila. Molecular Biology and Evolution 13, 191199.CrossRefGoogle ScholarPubMed
Weichenhan, D., (1991). Fast recovery of DNA from agarose gels by centrifugation through blotting paper. Trends in Genetics 7, 109.CrossRefGoogle Scholar
Wilkie, T. M., & Yokoyama, S., (1993). Evolution of the G protein alpha subunit multigene family. Society of General Physiologists Series 49, 249270.Google Scholar