Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T16:17:30.690Z Has data issue: false hasContentIssue false

The production and characteristics of diploids in Ustilago violacea

Published online by Cambridge University Press:  14 April 2009

A. W. Day
Affiliation:
Department of Agricultural Botany, University of Reading
J. K. Jones
Affiliation:
Department of Agricultural Botany, University of Reading

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Forty-nine auxotrophic mutants were isolated after irradiation with ultraviolet light. The biochemical requirements were identified and the response to possible precursors tested in some of them.

2. Diploid colonies were synthesized from compatible, auxotrophic haploid strains on an artificial medium by an adaptation of the balanced heterokaryon technique. Selection of diploid cells was especially convenient as the dikaryon cannot grow on such media, and is therefore only a transitory stage under these cultural conditions. Diploid cells were different in shape and size from haploids, and gave rise to colonies which could be distinguished by eye from haploids. The way in which diploid colonies arose from fusions between haploid cells was followed by microscopic observation. When known numbers of fused haploid cells were plated on minimal medium, diploid colonies occurred at a frequency of 3 × 10−4.

3. Diploid cells, heterozygous for mating-type alleles, were incompatible with either haploid mating-type (i.e. neutral).

4. Diploid cells could infect the host plant as a pure culture (i.e. they are solopathogenic).

5. Meiotic and mitotic segregation of the large-celled strains was used to confirm diploidy. Spontaneous mitotic segregation was very rare. Mitotic crossing-over was induced at a high frequency by irradiation of diploid cells with ultraviolet light. A convenient technique for induced haploidization was devised using p-fluoro-phenylalanine. Preliminary evidence using this technique indicates a haploid chromosome number of at least seven.

6. It is considered that U. violacea has many advantages as an organism for genetical research, especially for analysis of the parasexual cycle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

References

REFERENCES

Baker, H. G. (1947). Infection of species of Melandrium by Ustilago violacea (Pers.) Fuckel and the transmission of the resultant disease. Ann. Bot. 11, 333348.CrossRefGoogle Scholar
Barron, G. L. (1962). The parasexual cycle and linkage relationships in the storage rot fungus, Penicillium expansum. Can. J. Bot. 39, 16031613.CrossRefGoogle Scholar
Bauch, R. (1922). Kopulationsbedingungen und sekundäre Geschlechtsmerkmale bei Ustilago violaceae. Biol. Zbl. 42, 938.Google Scholar
Blumer, S. (1937). Untersuchungen über die Biologie von Ustilago violacea (Pers.) Fuckel. 1. Mitteilung: Ernährungs- und Kulturbedingungen. Wirkungen des Saponins. Arch. Mikrobiol. 8, 458478.CrossRefGoogle Scholar
Bonner, D. (1946). Production of biochemical mutations in Penicillium. Am. J. Bot. 33, 678686.CrossRefGoogle ScholarPubMed
Bowman, D. H. (1946). Sporidial fusion in Ustilago maydis. J. agric. Res. 72, 233243.Google ScholarPubMed
Casselton, L. A. (1965). The production and behaviour of diploids of Coprinus lagopus. Genet. Res. 6, 190208.CrossRefGoogle ScholarPubMed
Casselton, L. A. & Lewis, D. (1966). Compatibility and stability of diploids in Coprinus lagopus. Genet. Res. 8, 6172.CrossRefGoogle ScholarPubMed
Christensen, J. J. (1931). Studies on the genetics of Ustilago zeae. Phytopathology 4, 129188.Google Scholar
Clutterbuck, A. J. & Roper, J. A. (1966). A direct determination of nuclear distribution in heterokaryons of Aspergillus nidulans. Genet. Res. 7, 185194.CrossRefGoogle Scholar
Day, A. W. & Jones, J. K. (1966). Induced haploidization in diploid cultures of Ustilago violacea. Microb. Genet. Bull. no. 25, pp. 56.Google Scholar
Doerman, A. H. (1944). A lysineless mutant of Neurospora and its inhibition by arginine. Archs Biochem. 5, 373384.Google Scholar
East, E. M. & Mangelsdorf, A. J. (1925). A new interpretation of the hereditary behaviour of self-sterile plants. Proc. natn. Acad. Sci., U.S.A. 11, 116183.CrossRefGoogle ScholarPubMed
Elliott, C. G. (1960). The cytology of Aspergillus nidulans. Genet. Res. 1, 462476.CrossRefGoogle Scholar
Fincham, J. R. S. & Day, P. R. (1965). Fungal Genetics. Oxford: Blackwell.Google Scholar
Fischer, G. W. & Holton, C. S. (1957). Biology and Control of the Smut Fungi. New York: Ronald Press.Google Scholar
Garber, E. D. & Beraha, L. (1965). Genetics of phytopathogenic fungi. XIV. The parasexual cycle in Penicillium expansum. Genetics, Princeton 52, 487492.CrossRefGoogle ScholarPubMed
Gattani, H. L. (1946). Differences in diploid lines of Ustilago zeae. Phytopathology 36, 398. (Abstr.)Google Scholar
Harper, R. A. (1898). Nuclear phenomena in the smuts. Trans. Wis. Acad. Sci. Arts Lett. 5, 475498.Google Scholar
Hastie, A. C. (1964). The parasexual cycle in Verticillium albo-atrum. Genet. Res. 5, 305316.CrossRefGoogle Scholar
Holliday, R. (1961 a). The genetics of Ustilago maydis. Genet. Res. 2, 204230.CrossRefGoogle Scholar
Holliday, R. (1961 b). Induced mitotic crossing-over in Ustilago maydis. Genet. Res. 2, 231248.CrossRefGoogle Scholar
Holliday, R. (1962). Selection of auxotrophs by inositol starvation in Ustilago maydis Microb. Genet. Bull. no. 18, pp. 2830.Google Scholar
Holliday, R. (1964). The induction of mitotic recombination by mitomycin C in Ustilago and Saccharomyces. Genetics, Princeton 50, 323335.CrossRefGoogle ScholarPubMed
Käfer, E. (1961). The process of spontaneous recombination in vegetative nuclei of Aspergillus nidulans. Genetics, Princeton 46, 15811609.CrossRefGoogle ScholarPubMed
Kinsey, J. A. (1967). Phenotypic suppression of a resistance mutant in Neurospora fpr-l. Genetics, Princeton 56, 570571. (Abstr.)Google Scholar
Kniep, H. (1919). Untersuchungen über den antherenbrand (Ustilago violacea Pers.). Ein Beitrag zum Sexualitatsproblem. Z. Bot. 11, 275284.Google Scholar
Kniep, H. (1926). Über Artkreuzungen bei Brandpilzen. Z. Pilzk. 10, 217247.Google Scholar
Lederberg, J. & Lederberg, E. M. (1952). Replica plating and indirect selection of bacterial mutants. J. Bact. 63, 399406.CrossRefGoogle ScholarPubMed
Lewis, D. (1954). Comparative incompatibility in angiosperms and fungi. Adv. Genet. 6, 235285.CrossRefGoogle ScholarPubMed
Lhoas, P. (1961). Mitotic haploidization by treatment of Aspergillus niger diploids with p-fluorophenylalanine. Nature, Lond. 190, 744.CrossRefGoogle Scholar
Lhoas, P. (1967). Genetic analysis by means of the parasexual cycle in Aspergillus niger. Genet. Res. 10, 4561.CrossRefGoogle ScholarPubMed
McCully, K. S. & Forbes, E. (1965). The use of p-fluorophenylalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genet. Res. 6, 352359.CrossRefGoogle ScholarPubMed
Perkins, D. D. (1949). Biochemical mutants in the smut fungus Ustilago maydis. Genetics, Princeton 34, 607626.CrossRefGoogle ScholarPubMed
Person, C. & Wighton, D. (1964). The chromosomes of Ustilago. Can. J. Genet. Cytol. 6, 242 (Abstr.)Google Scholar
Pontecorvo, G. (1949). Auxanographic techniques in biochemical genetics. J. gen. Microbiol. 3, 122126.CrossRefGoogle ScholarPubMed
Pontecorvo, G. (1956). The parasexual cycle in fungi. A. Rev. Microbiol. 10, 393400.CrossRefGoogle ScholarPubMed
Pontecorvo, G. & Käfer, E. (1958). Genetic analysis based on mitotic recombination. Adv. Genet. 9, 71104.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillns nidulans. Adv. Genet. 5, 141238.CrossRefGoogle ScholarPubMed
Putrament, A. (1964). Mitotic recombination in the paba-1 cistron of Aspergillus nidulans. Genet. Res. 5, 316327.CrossRefGoogle Scholar
Roper, J. A. (1952). Production of heterozygous diploids in filamentous fungi. Experientia 8, 1415.CrossRefGoogle ScholarPubMed
Schmitt, C. G. (1940). Cultural and genetic studies on Ustilago zeae. Phytopathology 30, 381390.Google Scholar
Smith, D. A. & Childs, J. D. (1966). Methionine genes and enzymes of Salmonella typhimurium. Heredity, Lond. 21, 265285.CrossRefGoogle ScholarPubMed
Srb, A. & Horowitz, N. H. (1944). The ornithine cycle in Neurospora and its genetic control. J. biol. Chem. 154, 129139.CrossRefGoogle Scholar
Strømnaes, O. & Garber, E. D. (1963). Heterocaryosis and the parasexual cycle in Aspergillus fumigatus. Genetics, Princeton 48, 653662.CrossRefGoogle ScholarPubMed
Wang, D. T. (1932). Observations cytologiques sur l'Ustilago violaceae (Pers.) Fuckel. C. r. hebd. Séanc. Acad. Sci., Paris 195, 14171418.Google Scholar
Warr, J. R. & Roper, J. A. (1965). Resistance to various inhibitors in Aspergillus nidulans J. gen. Microbiol. 40, 273281.Google Scholar
Weglenski, P. (1966). Genetical analysis of proline mutants and their suppressors in. Aspergillus nidulans. Genet. Res. 8, 311321.CrossRefGoogle Scholar
Whitehouse, H. L. K. (1951). A survey of heterothallism in the Ustilaginales. Trans. Br. mycol. Soc. 34, 340355.CrossRefGoogle Scholar
Zillig, H. (1921). Über spezialisierte Formen beim Antherenbrand, Ustilago violacea (Pers.) Fuckel. Zentbl. Bakt. ParasitKde 53, 3373.Google Scholar